Appendix L: Using Phase-Locked Loops with VHDL

This tutorial shows how to instantiate PLLs in FPGAs when using Vivado or Quartus Prime.
In both cases, the PLL’s default ports are clock_in, clock_out (one or more), reset, and locked
(of the last two, at least locked can be disabled). The circuit of figure L.1 will be used as an
example (see also complete application in example 17.7).

I. Instantiating PLLs with Vivado

1) Start Vivado, create a project, and enter a VHDL code for the circuit of figure L.1, without
the PLL yet (i.e., without lines 14-18 and 22).

2) Under Project Manager, select IP Catalog > FPGA Features and Design > Clocking > Clock
Wizard, which opens the window of figure L.2. Pay particular attention to the five arrows:

- On the left, notice the PLL's default ports (for clock in, clock out, reset, and locked).

- In the center, mark PLL.

- At the top, enter a name for the component (say, my_pll).

- At the bottom, enter name (c/lk_50MHz) and frequency (50 MHz) for the input clock.
2) Open the second tab (Output Clocks) of figure L.2, leading to figure L.3. Note the four
arrows:

- Near the top, enter name (clk_120MHz) and frequency (120 MHz) for the output clock;

observe that not any speed is allowed.

- At the bottom, unmark the reset and locked ports.

- On the left, notice that now the only active ports are those for clock in and clock out.

- Click OK.
3) Returning to your design, observe in the project IP Sources list (figure L.4) that a compo-
nent with instantiation template called my_pll.vho was created. Click on it, and the code on

the right of figure L.4 will be displayed, even having indications on where to cut to get just
the right portion of code for component declaration.

564 Appendix L

1 | library ieee;

2 | use ieee.std_logic_1164.all;

3

4 | entity using PLLs is

5 port (

6 clk_50MHz: in std_logic;

7 din: in std_logic;

8 dout: out std_logic);

9 | end entity;
10
11 | architecture example of using_PLLs is
12 signal clk_120MHz: std_logic;

13
14 component my_pll is
15 port (

16 clk_120MHz: out std_logic;

17 clk_56MHz: in std_logic);

18 end component;

19

20 | begin

21

22 comp: my_pll port map (clk 56MHz => clk_56MHz, clk_120MHz => clk_120MHz);
23

24 process (clk_120MHz)

25 begin

26 if rising edge(clk_120MHz) then
27 dout <= din;

28 end if;

29 end process;

30

31 | end architecture;

Figure L.1

4) Copy this component declaration to your project (lines 14-18 in the code shown above)
and make the instantiation of that component (line 22).

Result: The RTL view produced by Vivado after compilation is shown in figure L.S5.

Il. Instantiating PLLs with Quartus Prime

1) Start Quartus Prime, create a project, and enter a VHDL code for the circuit of figure L.1
but without the PLL yet (i.e., without lines 14-18 and 22).

2) Access Tools>IP Catalog>Library>Basic Functions>Clocks, PLLs, and Resets>
PLL > Altera PLL, which leads to figure L.6.

- Mark VHDL.

- Enter a name for your component (say, my_pll).
- Click OK, which opens the MegaWizard (figure L.7).

Clocking Wizard (5.4) ’
@ Documentation (= IP Location C' Switch to Defaults
| "‘
| [psymbot |Resource ComponentName | my_pil)))
/| Show disabled ports Clocking Options ~ Output Clocks ‘Pon Renaming | PLLE? Settings | Summary
Clock Monitor
| Enable Clock Monitoring
Z Primitive ‘ —/
e s_axi_ite MMM ® PLL
4 cxoni_o
[I[4+ cLicin o Clocking Features Jitter Optimization
o CLELLD CLKFB_OUT_D |
s @ ack _OUTD + /| Frequency Synthesis || Minimize Power ® Balanced
i clk_stop[3:0] fm *
s n & e ;
9 e = arese clk_glitch{3:0] pm /| Phase Alignment) Minimizs Oulpid Jiter
- rest
interrupt =
o resetn =D | Dynamic Reconfig Maximize Input Jitter filtering
clk_oor{3:0] =
= ref_clk s
-~ clk_out! p= | Safe Clock Startup
~{ user_clkd 5
locked =
~ user_clk
- user_cie Dynamic Reconfig Interface Options
- user_cika Phase Duty Cycle Config [] Write DRP registers
®) AXl4Lite RP
{ clk_50MHz R S
Input Clock Information z Z
InputClock PortName Input Frequency(MHz) Jitter Options Input Jitter Source
 Primary ok _SOMHz | 50.0 19.000-800.000 | UI ~ 0010 Single ended clock capable.
| |Secondary | clkin2 100.000 0010 Single ended clock capabl
< >
Figure L.2
Clocking Wizard (5.4) ‘
@ Documentation [IP Location C' Switch to Defaults
IP Symbol Resource ComponentName 1 my_pll
/| Show disabled ports Clocking Options | OutputClocks Port Renaming !PLLEZ Settings ‘ Summary ‘
The phase is calculated relative to the active input clock.
| Output Freq (MHz) | Phase (degrees) | Duty Cycle (%) |
:; OutputClock | PortName oo ested | Actual | Requested Actual 'Requested | Actual [y
/) clk_outt k_120MHz | 120 120,000 0,000 10000 50000 500 BUFC
[clk_out2 clk_out2 100.000 0,000 50000 N BUFG
z clk_out3 clk_out3 100.000 0,000 In 50000 NA BUFG
4 s o ite clk_outd ciouts | 100,000 0000 J | 50.000 s | Bure
4 CLK_IN1_D dlk_outs clk_outs 100.000 0.000 N 50000 In BUFC
I+ cLxn2_b diouts | dk_outs 100.000 u 0.000 50,000 NiA BUFC
lIl# cLkFe_N_D
= s_axi_aclk cLkre_ouT_D Il USE CLOCK SEQUENCING Clocking Feedback
< 5_axi_aresetn clk_stop(3:0] fm
=1 reset clk_glitch[3:0] fm Source Signaling
q resetn interrupt = o | ELon? |
—f ref_clk clk_0or(3:0] Automatic Control On-Chip ® single-ended
=] user_clk0 Clk_120MHz = Automatic Control Of-Chip Differential
=] user_ck1 () User-Controlled On-Chip
= user_clk2
() User-Controlled Ofi-Chip
= user_clk3
= clk_50MHz

Figure L.3

Enable Optional Inputs / Outputs for MMCM/PLL

“Jreset [power_down

[locked

Reset Type

@) Active High () Active Low

566

Sources x Netlist (e IR Y
@] =|s|+ o
Search: | Q-

vi@ IP(1)

v B my_pll (25)
v [Instantiation Template (1)
D
> = Synthesis (10)
« Simulation (8)
= Change Log (1)
¢ my_pll.dcp
@ my_pll_sim_netlistvhdl
@ my_pll_sim_netlisty
@ my_pll_stubvhd
@ my_pll_stubv

Hierarchy | IP Sources = Libraries Compile Order

Figure L.4

component my pll
port
(-- Clock in ports
-- Clock out ports

end component;

dout_reg
clk_S50MHz clk_120MHz
clk_50MHz = = > C
D Q ——D dout
my_pll D
din D RTL_REG
Figure L.5
Qb Save IP Variation
IP variation file name:

© Verilog

IP variation file type

© vHDL €<~

C:/intelFPGA_lite/17.0/my_designs/using_PLLs/my_pll

Co
e

Figure L.6

clk_120MHz : out
clk_S0MHz : in
):

Appendix L

----Begin Cut here for COMPONENT Declaration

std_logic;
std logic

-- COMP TAG END -- End COMPONENT Declaration

Using Phase-Locked Loops with VHDL

567
X AtteraPLL - my i R Ty - s - S W " — W — T — (=] B
Altera PLL B
Megacors altera_pll Documentation
[*BlockDiagram | |}| ("General | Clock | Cascading | MIF | settings | AdvancedF
[show signals Device Speed Grade: %
PLL Mode: integer-NPLL &
Reference Clock Frequency: |50.0 MHz e
E“Operaﬂon Mode: direct .
tport
[Enable physical output clock parameters
Clocks |
Number Of Clocks: E’
[*_outciko é]

Desired Frequency: 120.0 MHz
Actual Frequency: 120.000000 MHz [¥1
Phase Shift units: ps =
Phase Shift: 0 ps
Actual Phase Shift: ops M
Duty Cycle: 50 %

@ Info: my_pll: The legal reference clock frequency is 5.0 MHz..700.0 MHz.
© Info: my_pll: Able to implement PLL with user seftings

S

Figure L.7

*%_Generation - Altera PLL 16.1 | o

I3 Info: my_pll: Variation language : VHDL
I Info: my_pll: Output directory : C:\intelFPGA_lite\17.0\my_designs\using_PLL|
I Info: my_pll: Generating variation file C:\intelFPGA_lite\17.0\my_designs\usi
I(® Info: my_pll: Generating synthesizable HDL design

I® Info: Generating altera_pll “my_plI” for QUARTUS_SYNTH
I(® Info: "my_plI" instantiated altera_pll “my_plI"

I Info: Done "my_plI" with 2 modules, 3 files

I(® Info: my_pll: Generating simulation model

U® Info: Generating altera_pll "my_plI" for SIM_VHDL

U® Info: Generating simgen model

Info: Info:

Generation Successful

Figure L.8

O Quartus Prime IP Files [= |

When you create an Intel IP variation, a Quartus Prime IP File is generated.
Quartus Prime IP Files are used to represent the Intel IP in your design. Do you
want to add the Quartus Prime IP File to the project?

[¥] C:\intelFPGA _lite\17.0\my_designs\using_PLLs\my_plLgip

Automatically add Quartus Prime IP Files to all projects

(Note: Turning on this option permanently suppresses this dialog box. You can
change this setting in the Options dialog box)

[ves J[no J[rew

Figure L.9

568 Appendix L

Select the design files you want to include in the project. Click Add All to add all design files in the project
directory to the project.
File name: [;] Add
« X | addau
File Name Type Library Design Entry/Synthesis Tool HDL Version R
using_PLLs.vhd VHDL File <None> Default
% my_pllL.gip IP Variation File (.gip) <None> e
my_plLsip Quartus Prime SIP File <None> Do
Figure L.10
. dout~reg0
din[> 8
my_pll:comp
dout
clk_50MHz D refclk outclk 0 | 1'hO
1'h0 rst
Figure L.11

3) In figure L.7, pay particular attention to the four arrows:
- On the left, notice the PLL's default ports (clock in, clock out, reset, and locked).
- Near the top, enter the frequency (50 MHz) for the reference (input) clock.
- In the center, enter the desired frequency (120 MHz). The frequency that will be actually
generated is displayed right below it (not all speeds are possible). Choosing Fractional-N
PLL instead of Integer-N PLL gives additional options.
- Notice that the locked port can be disabled (as we did for Vivado above).
- Click Finish.
4) Figure L.8 is exhibited when done. Click Exit, which leads to figure L.9. Click Yes.

5) Go to Project > Add/Remove Files in Project and confirm that the my_pll.qip and my_plI.
sip files were added automatically to the design, as shown in figure L.10.

6) Open, for editing, the file my_pll.vhd. Copy its entity to your design to be used as a com-
ponent. If the rst and locked ports were not disabled, lines 14-22 of the previous code would
become lines 14-24 below. Note that, in this example, rst and locked were disabled during
instantiation (line 24), with the former set to zero and the latter left unconnected.

14 component my_pll is
15 port (
16 refclk: in std_logic := '0'; --input clock

17 rst: in std_logic := '0'; --asynchronous reset

Using Phase-Locked Loops with VHDL 569

18 outclk_0: out std_logic; --output clock
19 locked: out std_logic); --PLL has locked
20 end component;

21

22 begin

23

24 comp: my_pll port map (clk_50MHz, '@', clk_120MHz, open);

Result: The RTL view produced by Quartus Prime is shown in figure L.11.

