
A review of combinational circuits was seen in chapter 1. As we know, a circuit is said to be 
combinational when its output depends uniquely on its preset input, so the circuit has no 
clock or memory. Regular arithmetic circuits are examples of combinational circuits because 
the present computation (say, a multiplication) is not affected by previous computations. The 
material in that chapter will serve as basis for the examples and exercises in this chapter and 
in the next.

Purely concurrent VHDL code (i.e., without processes) is proper for implementing only 
combinational circuits, for which the statements when, select, and generate are commonly 
used. Digital systems, however, usually include sequential circuits, for which sequential code 
(and therefore sequential statements, like if, case, and loop) is needed. Concurrent code is 
studied in chapters 10 and 11, while sequential code (which can infer both sequential and 
combinational circuits) is studied in chapters 12 and 13.

It is also important to emphasize that many combinational circuits can be constructed 
without any formal statement thanks to the large collection of predefined operators (which 
are just function calls, as seen in chapter 9) and to the easiness with which data arrays can be 
constructed and manipulated in VHDL (as seen in chapter 8). As an example of the former, 
see example 6.1; for the latter, see example 8.1.

10.1  Concurrent Statements

In figure 6.1 we had a global view of a VHDL design code’s structure. The architecture body, 
being the region where the circuits are constructed, is naturally the most complex part, so it 
is in that region that we concentrate our efforts in this chapter and the next three.

Figure 10.1a shows what can be used to construct an architecture body. It can contain 
only concurrent statements (recall that VHDL is inherently concurrent rather than sequen-
tial), which are the following: when statements; select statements; generate statements; 
process statements; component instantiation statements; and procedure call statements (block 
and assertion statements were left out—the first, because of its rare usage; the second, 
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because it is not used to generate hardware but rather to test it, so it will be seen in chap-
ter 14). Because these statements are concurrent, their relative positions in the code do 
not matter.

Note that function call was also included in the list of figure 11.1a. The reason for its 
being between parentheses is because function calls are not statements but rather part of 
expressions (chapter 14). For instance, the predefined operators (chapter 9) are function 
calls.

A special statement in this list is the process statement. Although as a whole it is concur-
rent with respect to all other statements, internally it is sequential, so only sequential state-
ments (listed in figure 10.1b) can be used inside a process. Note that some statements appear 
in both (concurrent and sequential) lists.

The formal designations for the concurrent statements of figure 10.1a, according with the 
IEEE 1076 standard, are shown in table 10.1. Brief comments for each case follow.

Concurrent signal assignment statements:  This category contains two very useful statements, 
called when and select. They are referred to as conditional signal assignment and selected signal 
assignment statements, respectively. Their original (concurrent) version is proper only for the 
construction of combinational circuits.

Generate statements:  As shown in table 10.1, there are three versions of generate. The most 
common is for-generate, which acts as a loop that replicates a number of times a section of 

Figure 10.1
(a) Concurrent and (b) sequential VHDL statements, all synthesizable (function call is not a statement 

but was included for clarity; see the text).
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code containing only concurrent statements. In summary, a loop is called generate in concur-
rent code (figure 10.1a) and loop in sequential code (figure 10.1b).

Process statement:  The only VHDL units that are not (internally) concurrent are process and 
subprograms (the latter consist of functions and procedures). However, of these, only processes 
are built directly in the statement part of an architecture body, and, as already mentioned, 
any process is concurrent with respect to all other statements as a whole. As will be seen in 
chapter 12, despite being sequential, a process can be used to construct both sequential and 
combinational circuits.

Component instantiation statement:  This statement allows previous designs (which can be 
combinational or sequential) to be included as part of a new design, hence allowing code 
reusability and IP inclusion. It also allows the construction of hierarchical (structural) code. 
Component instantiations are always concurrent, so they cannot be done in sequential units 
(process and subprograms).

Concurrent procedure call statement:  As already mentioned, VHDL subprograms consist of 
functions and procedures. However, while a function is called as part of an expression (for 
example, “if rising_edge(clk) then … ”, where rising_edge is a function, or “y <= a + b;”, 
where “+” is a function), a procedure call is a statement on its own (for example, “add(a, 
b, cin, sum, cout);”). Both (procedure and function) calls are allowed in concurrent (and 
sequential) code.

The main goal of this chapter is to describe and emphasize all that is needed to design com-
binational circuits using concurrent VHDL code. In the same way, chapter 12 will describe 
and emphasize all that is needed to design both combinational and sequential circuits using 
sequential VHDL code. This separation is important because, as seen in chapters 1 and 2, such 
circuits are analyzed and designed differently.

Table 10.1
Main concurrent statements

Category/Subcategory Statements Studied in

Concurrent signal  
assignment statements

Conditional assignment when Section 10.2

Selected assignment select Section 10.3

Generate statements

for … generate

Section 10.4if … generate

case … generate

Process statement process Section 12.3

Component instantiation statement component instant. Section 10.5

Concurrent procedure call statement procedure call Section 14.4
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In summary, this chapter describes the following concurrent statements: when, select, gen-
erate, and component instantiation. The others (process and subprogram calls), since they 
are internally sequential, are studied separately, in chapters 12–13 and 14, respectively. Two 
special cases of concurrent code are also discussed in this chapter: (1) how to avoid assigning 
a value to a signal more than once and (2) how to implement arithmetic circuits properly in 
VHDL.

10.2  The when Statement

As seen in table 10.1, an assignment using the when statement is called a conditional assign-
ment. Its syntax is presented below in two versions; note that the first ends with “else value,” 
while the second ends with “when condition.”

target <= value when condition else
          value when condition else
          value;

	

target <= value when condition else
          value when condition else
          value when condition;

The target in the syntax above is a signal (VHDL-2008 allows when to be used also in 
sequential code, so there the target can be also a variable). The value can range from a 
simple static value up to elaborate expressions involving several values. Any number of 
tests is allowed, but only a few are usually employed (straightforward truth tables, which 
can be long, should be entered using the select statement as described in the next section). 
Indeed, note in the syntaxes above that the when statement has a priority-encoding nature 
(for any given line to be executed, the tests in all preceding lines must return false) and 
hence are definitely not tailored for entering straightforward truth tables (though that is 
not illegal).

A typical use for when is shown below (see the complete code in example 7.1). Note that it 
contains only one test, and the version ending in “else value” is employed.

outp <= inp when ena else (others => 'Z');  --multi-bit tri-state buffer (example 7.1)

Another example is shown below, using again the syntax ending in “else value.” The 
option on the left (VHDL-2008) is slightly less verbose, while that on the right is slightly 
clearer. Observe again the priority-encoding nature of when; for example, if a = '1', the out-
put is "01", regardless of b, c, and d, so the second line is equivalent to outp = "10" if a ≠ '1' 
and b = '0'. Note also that it would take a substantial effort to explicitly describe all possible 
conditions for a, b, c, and d.
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outp <= "01" when a else	 outp <= "01" when a='1' else
        "10" when not b else	         "10" when b='0' else
        "11" when c xor d else	         "11" when (c xor d)='1' else
        "--";	         "--";

The advantage of ending with “else value” is that it guarantees complete input-output 
mapping coverage, so the compiler will not infer latches (explained shortly). On the other 
hand, the statement ending with “when condition” is more informative because all condi-
tions are shown explicitly. In practice, explicit full-mapping descriptions are often not viable, 
particularly when using standard-logic types.

An example where explicit full description is viable is shown below and implements the 
multiplexer of figure 1.3a. The option on the left (ending with “when condition”) is obviously 
more informative than that on the right (ending in “else value”). (Recall, however, that because 
this is just a straightforward truth table, select is the recommended statement to implement it.)

Ending in when condition:	 Ending in else value:

y <= a when sel=0 else	 y <= a when sel=0 else
     b when sel=1 else	      b when sel=1 else
     c when sel=2 else	      c when sel=2 else
     d when sel=3;	      d;

The next example illustrates incomplete versus complete in-out mapping coverage. If the 
code on the left is employed, what should the output be, for example, when rst, hold, and 
run are all low? Since the compiler will execute anyway, it must make a decision that typi-
cally is to infer latches to hold the output’s current value. Such latches are highly undesirable 
because they add delays (which, by the way, are poorly predictable in FPGAs because latches 
are not built-in circuits), besides wasting hardware and power resources. Contrary to that, 
the code on the right provides a full in-out mapping description (it ends in “else value”), so 
latch inference does not occur.

Bad (infers latches):	 Fine (complete truth table coverage):

outp <= "00" when rst else	 outp <= "00" when rst else
        "01" when hold else	         "01" when hold else
        "11" when run; 	         "11" when run else
	         "--";

Note: When the output of a truth table is registered (which can occur in sequential circuits), a 
full truth table description is not necessary (latches will not be inferred because the result is 
already stored in memory anyway).

The unaffected keyword (section 12.5) or, equivalently, the null statement can be used with 
when. However, in combinational circuits that causes the inference of latches, so neither 
should be employed in codes that are for synthesis.



248	 Chapter 10

10.3  The select Statement

As seen in table 10.1, an assignment using the select statement is called a selected assignment. 
Its main use is to enter truth tables, which select does better than when for two reasons: first, 
select does not posses the priority-encoding nature of when; second, full truth table coverage 
is checked automatically by the compiler, which is not running the compilation if the table 
is not completely described (hence preventing the inference of latches always).

The syntax for select statements is presented below, in two versions. Note that the first 
ends with “when others,” while the second ends with “when choice.”

with expression select
   target <= value when choice,
             value when choice,
             value when others;

	

with expression select
   target <= value when choice,
             value when choice,
             value when choice;

The version on the left above employs the keyword others to cover all remaining cases, 
while the version on the right describes the entire truth table explicitly, leading to a more 
informative code. However, as mentioned previously, in most cases only the former is viable.

The target in the syntax above is a signal (VHDL-2008 allows select to be used also in 
sequential code, so there the target can be also a variable). The value can range from a simple 
static value up to elaborate expressions involving several values. In the choice expressions, 
the following can be used: to (for ascending index direction), downto (descending direction), 
“|” (interpreted as or), and the keyword others. Regarding the unaffected keyword or, equiva-
lently, the null statement, see the comment at the end of section 10.2.

The example below shows an implementation for the multiplexer of figure 1.3a. Since in 
this case expressing all choices explicitly takes the same effort as using the others keyword, 
the code on the right, being more informative, is preferred.

with sel select	 with sel select
   y <= a when 0,	    y <= a when 0,
        b when 1,	         b when 1,
        c when 2,	         c when 2,
        d when others;	         d when 3;

The select? statement
The matching select statement (select?) employs the matching equality comparator (?=), 
which, as seen in section  9.1.3, assumes the following for std_ulogic values: '0'='L', 
'1'='H', and '−'=any value. Any other combination returns 'U' or 'X' or '0'. This state-
ment is particularly useful when the truth table contains “don’t care” values at the input, 
as illustrated in the example below (for “don’t care” values at the output, see example 7.2).
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Example 10.1. Priority encoder
The code below implements the priority encoder of figure 1.6.a. As usual, it starts with a 
packages list (lines 2–3, here with just one package), followed by the entity declaration (lines 
5–9, using only type std_logic_vector for the circuit ports) and the architecture body (lines 
11–19). Note the use of select? (lines 13–18) because “don’t care” inputs are involved. Observe 
also that the statement ends with “when others,” so all truth table entries are covered, allow-
ing select? to be synthesized.

	1	 --------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	
	5	 entity priority_encoder is   
	6	    port (
	7	       inp: in std_logic_vector(3 downto 0);
	8	       outp: out std_logic_vector(3 downto 0));   
	9	 end entity;
	10	
	11	 architecture lut of priority_encoder is
	12	 begin
	13	    with inp select?
	14	       outp <= "1000" when "1---",
	15	               "0100" when "01--", 
	16	               "0010" when "001-",
	17	               "0001" when "0001",
	18	               "0000" when others;
	19	 end architecture;
	20	 --------------------------------------------------

10.4  The generate Statement

As seen in table 10.1, there are three versions for this statement: for-generate, if-generate, and 
case-generate. They are described below.

for-generate:

label: for identifier in generate_range generate
   [generate_declarative_part
begin]
   concurrent_statements
end generate [label];



250	 Chapter 10

This is the most frequently used form of generate. It acts as a loop, but because it is a con-
current statement, a piece of hardware is inferred every time the loop goes around (hence 
generate is indeed a well-chosen name).

An example is shown below, with two equivalent versions (that on the right uses the range 
and left attributes, seen in section 9.3.2, which help in the construction of parameterized 
code). Each time the generate loop goes around, an XOR gate is inferred, so the circuit of 
figure 10.2 is produced.

signal a, b, x: std_ulogic_vector(7 downto 0);	
...                                   ...
gen: for i in 0 to 7 generate         gen: for i in x'range generate
   x(i) <= a(i) xor b(7-i);                x(i) <= a(i) xor b(b'left-i);
end generate;                         end generate;

The hardware instantiated by the generate statement can be an entire design that we want 
to include as part (i.e., a component, in VHDL language) of a new, larger design. That will be 
seen in section 10.5.

The other two forms of generate are shown below.

if-generate: case-generate:

  label: if condition generate   label: case expression generate

     concurrent_statements;       when choice =>

  [elsif condition generate          concurrent_statements;

     concurrent_statements;]       when choice =>

  [else generate          concurrent_statements;

     concurrent_statements;]       ...

  end generate [label];   end generate [label];

Figure 10.2
Hardware produced by a generate statement.
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These are conditional forms of generate. The syntaxes for if and case are similar to those 
for the sequential if and case statements (chapter 12). An application for these generate state-
ments is to choose between different hardware specifications determined, for example, by a 
generic constant, as in the example below.

Example 10.2. Conditional adder instantiation
Say that we have a library of standard cells, among which are unsigned and signed adders of 
generic size. The unsigned version, called adder_unsigned, is shown in the first of the two codes 
below (to obtain the other version, just replace the word “unsigned” with “signed”). The number 
of bits is determined by the generic constant WIDTH (line 8), whose value can be left unspeci-
fied because it can/will be overwritten by the generic map association during instantiation.

The second code below is the main code, in which one of these adders is instantiated. 
The selection is made by a generic constant, called POLARITY (line 7), which points to the 
unsigned version when low (lines 18–19) or the signed version otherwise (lines 20–21). Note 
that the instantiation is done using the conditional case-generate statement (lines 17–22); 
another option would be to use the if-generate statement, but for simple cases the former is 
preferred. (Component instantiation details are presented in the next section.)

	1	 ---------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	 use ieee.numeric_std.all;
	5	
	6	 entity adder_unsigned is   
	7	    generic (
	8	       WIDTH: natural);
	9	    port (
	10	       in1, in2: in std_logic_vector(WIDTH-1 downto 0);
	11	       sum: out std_logic_vector(WIDTH-1 downto 0));   
	12	 end entity adder_unsigned;
	13	
	14	 architecture adder_unsigned of adder_unsigned is
	15	 begin
	16	    sum <= std_logic_vector(unsigned(in1) + unsigned(in2));
	17	 end architecture adder_unsigned;
	18	 ---------------------------------------------------------------
	
	1	 ------------------------------------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	
	5	 entity adder is   
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	6	    generic (
	7	       POLARITY: std_logic := '1';
	8	       NUM_BITS: natural := 32); 
	9	    port (
	10	       a, b: in std_logic_vector(NUM_BITS-1 downto 0);
	11	       sum: out std_logic_vector(NUM_BITS-1 downto 0));
	12	 end entity adder;
	13	
	14	 architecture with_std_cell of adder is
	15	 begin
	16	
	17	    gen_adder: case POLARITY generate
	18	       when '0' =>
	19	          adder: entity work.adder_unsigned generic map (NUM_BITS) port map (a, b, sum);

	20	       when others =>
	21	          adder: entity work.adder_signed generic map (NUM_BITS) port map (a, b, sum);
	22	    end generate;
	23	
	24	 end architecture with_std_cell;
	25	 -----------------------------------------------------------------------------------------

10.5  Component Instantiation Statements

As seen in figure 10.1, component instantiation statements are also concurrent statements, so 
they are not allowed in sequential units (i.e., process and subprograms). A single instantia-
tion can be done directly, but looped instantiations require the generate statement, which, as 
we saw, plays the role of loop in concurrent code.

A previous design (i.e., a complete VHDL code) can be instantiated as part of another 
design in two equivalent ways: using a component instantiation or using a design entity instan-
tiation. Both cases are described next.

10.5.1  Component Instantiation
To instantiate a component, a component declaration plus a component instantiation state-
ment are needed, as shown below.

component component_name [is]
   [generic (...);]
   port (...);
end component [component_name];

  

label: [component] component_name
   [generic map (generic_association_list)]
   port map (port_association_list);
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The component declaration (on the above left) consists simply of a copy of the entity 
declaration of the design to be instantiated with the word entity replaced with the word com-
ponent. The component name is the same as its entity’s name. The typical location for this 
declaration is the declarative part of architecture, package, or generate statement.

The component instantiation statement (syntax on the above right) provides the (possi-
bly new) names and values for the generic parameters by means of generic map, and the port 
mapping between the instantiated design and the current design by means of port map. The 
mapping associations can be named or positional; in the former, each association is explicitly 
named, while in the latter each position of the instantiated design is associated to the same 
position in the current design. Finally, if a port must be left unconnected in the instantiation, 
the keyword open should be used for it in the port map.

The example below shows, on the left, an entity called brick, of a design that is going to be 
instantiated by another design, whose entity, called wall, is shown on the right:

entity brick is	 entity wall is
   generic (	    generic (
      NUM_BITS: positive);	       WIDTH: positive := 32);
   port (	    port (
      a, b: in ...;	       x, y: in ...;
      c: out ...);	       z: out ...);
end entity brick;	 end entity wall;

Corresponding component instantiations, labeled comp, are shown below:

--Component instantiation with named association:
comp: brick generic map (NUM_BITS => WIDTH) port map (a => x, b => y, c => z);

--Component instantiation with positional association:
comp: brick generic map (WIDTH) port map (x, y, z);

Signal expressions in port map are allowed after VHDL-2008, as illustrated below:

... port map (x1 => y1, x2 => y2 and y3, x3 => to_unsigned(y4));

A complete component instantiation will be presented in example 10.3.

10.5.2  Design Entity Instantiation
This is another way of instantiating one design as part of another. As shown in the syntax 
below, an advantage here is that the component declaration is not needed. The instantiated 
code is allowed to have multiple architectures because that of interest to the present design 
can be specified in the optional architecture_name field. The work.entity_name declaration 
assumes that the entity_name.vhd file is present in the project directory.
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label: entity work.entity_name [(architecture_name)] 
  [generic map (generic_association_list)]
  port map (port_association_list);

The instantiations below are again for the brick and wall circuits, so they can be compared 
to the previous component instantiations.

--Design entity instantiation with named association:
comp: entity work.brick generic map (NUM_BITS => WIDTH) port map (a => x, b => y, c => z);

--Design entity instantiation with positional association:
comp: entity work.brick generic map (WIDTH) port map (x, y, z); 

Example 10.3. Carry-ripple adder built with full-adder components
The full-adder unit and the carry-ripple adder were reviewed in sections  1.5.1 and 1.5.2, 
respectively. In this example we use the full adder of figure 1.12a to build the carry-ripple 
adder of figure 1.13b.

Solution 1: Using design entity instantiation
The first code below is for the full-adder unit, with the outputs calculated using boolean 
equations (lines 13–14). Note that std_logic_1164 is the only package needed in the pack-
ages list (lines 2–3). The second code is for the carry-ripple adder. In the entity declaration 
(lines 5–13), a generic constant called NUM_BITS (line 7) is used to specify the number of bits 
(which is also the number of full-adder units) in this circuit. In the architecture body (lines 
15–24), a signal called carry is declared (line 16) to represent the internal circuit nodes (carry 
interface between the full-adder units). Next, a for-generate statement (lines 19–22) is used to 
do the instantiations (recall that a loop is called loop in sequential code, but it is called gener-
ate in concurrent code). Finally, observe that the instantiation (lines 20–21) was done using 
the design entity instantiation option (seen in this section), with positional association in the 
port map.

	1	 ----------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	
	5	 entity full_adder_unit is   
	6	    port (
	7	       in1, in2, cin: in std_logic;
	8	       sum, cout: out std_logic);
	9	 end entity;
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	10	
	11	 architecture boolean of full_adder_unit is
	12	 begin
	13	    sum <= in1 xor in2 xor cin;
	14	    cout <= (in1 and in2) or (in1 and cin) or (in2 and cin);
	15	 end architecture;
	16	 ----------------------------------------------------------------
	
	1	 ----------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	
	5	 entity carry_ripple_adder is   
	6	    generic (
	7	       NUM_BITS: natural := 8);
	8	    port (
	9	       a, b: in std_logic_vector(NUM_BITS-1 downto 0);
	10	       cin: in std_logic;
	11	       sum: out std_logic_vector(NUM_BITS-1 downto 0);
	12	       cout: out std_logic);
	13	 end entity;
	14	
	15	 architecture structural of carry_ripple_adder is
	16	    signal carry: std_logic_vector(0 to NUM_BITS);
	17	 begin
	18	    carry(0) <= cin;
	19	    gen_adder: for i in 0 to NUM_BITS-1 generate
	20	       adder: entity work.full_adder_unit 
	21	          port map (a(i), b(i), carry(i), sum(i), carry(i+1));
	22	    end generate;
	23	    cout <= carry(NUM_BITS);
	24	 end architecture;
	25	 ----------------------------------------------------------------

Solution 2: Using component instantiation
The architecture below shows the modifications needed in the code above to use the compo-
nent instantiation option, studied in the previous section. It requires a component declaration 
(lines 17–21) plus a component instantiation statement (line 25). In this case, the compo-
nent declaration (which is just a copy of the full-adder’s entity) is located in the declarative 
part of the architecture. Another option is to locate it in the declarative part of the generate 
statement (the keyword begin is then required), as shown in the subsequent code. Recall that 
still another popular place for component declarations is a package.
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	15	 architecture structural of carry_ripple_adder is
	16	    signal carry: std_logic_vector(0 to NUM_BITS);
	17	    component full_adder_unit is   
	18	       port (
	19	          in1, in2, cin: in std_logic;
	20	          sum, cout: out std_logic);
	21	    end component;
	22	 begin
	23	    carry(0) <= cin;
	24	    gen_adder: for i in 0 to NUM_BITS-1 generate
	25	       adder: full_adder_unit port map (a(i), b(i), carry(i), sum(i), carry(i+1));
	26	    end generate;
	27	    cout <= carry(NUM_BITS);
	28	 end architecture;
	29	 --------------------------------------------------------------------------------------
	
	15	 architecture structural of carry_ripple_adder is
	16	    signal carry: std_logic_vector(0 to NUM_BITS);
	17	 begin
	18	    carry(0) <= cin;
	19	    gen_adder: for i in 0 to NUM_BITS-1 generate
	20	       component full_adder_unit is   
	21	          port (
	22	             in1, in2, cin: in std_logic; 
	23	             sum, cout: out std_logic);
	24	       end component;
	25	    begin
	26	       adder: full_adder_unit port map (a(i), b(i), carry(i), sum(i), carry(i+1));
	27	    end generate;
	28	    cout <= carry(NUM_BITS);
	29	 end architecture;
	30	 --------------------------------------------------------------------------------------

10.6  Avoiding Multiple Assignments to the Same Signal

This section and the next discuss two special cases related to concurrent code. The first (in 
this section) introduces a way to circumvent the fact that a signal cannot receive multiple 
assignments in concurrent code. The second (next section) shows recommendations regard-
ing the implementation of arithmetic circuits in VHDL.

As we know, VHDL code is inherently concurrent, so any distribution of the statements 
(listed in figure 10.1) must lead to the same result. Consequently, we cannot assign a value 
to a signal somewhere in the code and then assign another value to it later, believing that 
the compiler should simply consider the last value as the valid one because that could lead 
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to different circuits depending on the relative positions of the statements (that would be fine 
only in regions of sequential code, studied in chapters 12–13).

A solution when multiple assignments are necessary is to create an internal signal with an 
extra dimension (for example, with dimension 1D × 1D if the target signal is 1D—see figure 8.1) 
and use it to do the computations, passing then the last element value of that signal to the 
target signal. This approach is illustrated in the example below.

Note:  It will be shown in chapter 12 (example 12.11, process P1) that the technique above 
is not necessary when using sequential code and a variable to do the computations, which 
simplifies the solution.

Example 10.4. Hamming-weight calculator
The code below implements a circuit that determines the Hamming weight (HW) of a vec-
tor, which is the number of 1s in it. The input and output are inp_vector and hamm_weight, 
respectively.

Solution 1: As usual, the code starts with declarations regarding the packages needed in 
the design (lines 2–4); std_logic_1164 is needed because the type std_logic_vector is used 
in the circuit ports (lines 11–12), while numeric_std is needed because the type unsigned is 
employed for type conversion (line 23—see details about integer to std_logic_vector con-
version in section 7.10.3).

The entity declaration (lines 6–13) starts with a generic list (lines 8–9), which allows the 
construction of a parameterized code. Note that if the minimum number of bits is wanted 
for BITS_OUT, then BITS_OUT is no longer an independent constant but rather a function 
of BITS_IN—that is, BITS_OUT = ⎡log2(BITS_IN + 1)⎤ (see comments after the code). Next come 
the circuit ports (lines 11–12) using only the type std_logic_vector.

The architecture body (lines 15–24) starts with type and signal declarations (lines 16–17). 
This 1D × 1D signal (an array of integers) is needed because, to follow the strategy just 
described, a signal with an extra dimension with respect to the signal to be measured (an 
integer, hence 1D, according to figure 8.1) is needed. The statement part employs a loop 
(lines 20–22—recall that loops are produced by the generate statement in concurrent code) to 
produce the internal values, the last of which is passed to the output (line 23).

	1	 --------------------------------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	 use ieee.numeric_std.all;
	5	
	6	 entity hamming_weight_calculator is
	7	    generic (
	8	       BITS_IN: positive := 16;



258	 Chapter 10

	9	       BITS_OUT: positive := 5);   --calculated by user as ceil(log2(BITS_IN+1))
	10	    port (
	11	       inp_vector: in std_logic_vector(BITS_IN-1 downto 0);
	12	       hamm_weight: out std_logic_vector(BITS_OUT-1 downto 0));
	13	 end entity;
	14	
	15	 architecture concurrent of hamming_weight_calculator is
	16	    type integer_array is array (0 to BITS_IN) of integer range 0 to BITS_IN; 
	17	    signal internal: integer_array;
	18	 begin
	19	    internal(0) <= 0;
	20	    gen: for i in 1 to BITS_IN generate
	21	       internal(i) <= internal(i-1) + 1 when inp_vector(i-1) else internal(i-1);
	22	    end generate;
	23	    hamm_weight <= std_logic_vector(to_unsigned(internal(BITS_IN), BITS_OUT));
	24	 end architecture;
	25	 --------------------------------------------------------------------------------------

Solution 2: An option to improve the code above is to employ an expression in the generic 
list, as shown below, but check restrictions and other comments as noted in section 6.7.

use ieee.math_real.all;
...
   generic (
      BITS_IN: positive := 16;
      BITS_OUT: positive := integer(ceil(log2(real(BITS_IN+1))))); --a dependent constant
   port (...

Solution 3: The most formal solution is to list only the truly independent constants in the 
generic list, as shown below, leaving the log2 computation for the range specifications (hence 
with increased verbosity):

entity hamming_weight_calculator is
   generic (
      BITS_IN: positive := 16);
   port (
      inp_vector: in std_logic_vector(BITS_IN-1 downto 0);
      hamm_weight: out std_logic_vector(integer(ceil(log2(real(BITS_IN+1))))-1 downto 0)));
end entity;

architecture concurrent of hamming_weight_calculator is
   constant BITS_OUT: positive := integer(ceil(log2(real(BITS_IN+1))));
   ...
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10.7  Suggested Approaches for Arithmetic Circuits

This is the second of the two special cases mentioned previously regarding concurrent code. 
It deals with arithmetic circuits, for which implementation suggestions are presented below.

Arithmetic circuits, reviewed in sections 1.5 and 1.6, are those for which sign matters. 
Therefore, the use of the type integer, for example, is not a good idea because the code then 
will not show explicitly whether the system is signed or unsigned (that is determined by the 
compiler upon inspecting the range specified for the involved integers).

The types recommended for arithmetic circuits, with the respective packages of origin 
(which must then be included in the code’s packages list—the second option for some of the 
packages below is for default parameters) are the following:

•	 For integer arithmetic: unsigned or signed (package numeric_std).

•	 For fixed-point arithmetic: ufixed or sfixed (package fixed_generic_pkg or fixed_pkg).

•	 For floating-point arithmetic: float (package float_generic_pkg or float_pkg).

For conciseness, in this section we will refer to these types as “arithmetic” types.
It is important, however, to try to always use the same types for the interface signals (cir

cuit ports) to allow direct connection between system blocks (in large projects) and help 
reusability. The standard-logic types (std_ulogic, std_logic, std_ulogic_vector, and std_
logic_vector) are here considered the default types for that role. Only in particular cases 
should the arithmetic types be used directly in the circuit ports (for example, when it is a 
stand-alone design and reusability is not an issue or when a port type must be a user-defined 
type).

Suggested procedure

Before the VHDL code:

1)	 Make sure that the circuit is arithmetic and decide which “arithmetic” type to use (see 
comment on integer versus floating point, presented next).

2)	 List all arithmetic operations involved (as seen in section 9.1.2, the predefined arith-
metic operators are +, −, *, /, **, rem, mod, and abs). Then check, using table 9.4, the con-
straints for each operator; for example, for types unsigned and signed, the “+” and “−” 
operators require the result to have the same number of bits as the largest operand, while 
the “*” operator requires the number of bits in the result to be equal to the sum of the bits 
in the operands.

3)	 Decide how to deal with overflow (section 1.6.1) in case the constraints above might 
cause the circuit to be subject to overflow. If overflow is not acceptable, one solution is to 
extend the operands and the result (the resize function is in section 7.9.3); if it is acceptable 
but must be flagged, decide how that flag will be produced.
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In the VHDL code:

1)	 As a general rule, use only standard-logic types for the circuit ports (see possible excep-
tions listed above).

2)	 In the architecture, convert the std_ulogic_vector or std_logic_vector inputs to one 
of the arithmetic types. Recall that single-bit standard-logic types (std_ulogic and std_
logic) do not need any conversion.

3)	 Do the computations.

4)	 Convert the multi-bit results to standard-logic vector types and send them out (along 
with all single-bit standard-logic results, of course).

5)	 Carefully simulate your design.

Examples of arithmetic circuits implemented using the suggestions above are presented after 
the following comment.

Integer (or fixed-point) versus floating-point  Floating point should be avoided whenever 
possible because of its high consumption of resources (hardware, primarily, but also some 
power; speed might also be impaired). One procedure that might help that decision is to define 
some error parameter for the target application and establish a maximum acceptable value 
for it and then run a corresponding analysis tool (Matlab, for example). Say that the analysis 
starts with 32-bit floating point, which passes the maximum-error test; the number of bits in 
the exponent and fraction should then be reduced gradually until the error limit is reached. 
This should then be repeated for integer (or fixed point) until the minimum number of bits is 
again obtained. Both should then be implemented in VHDL to check the amount of hardware 
consumed for the same device or technology in each case (plus other parameters, like maxi-
mum speed). As a practical example, this procedure could be applied to the sine calculator of 
example 11.3, for which the total harmonic distortion (THD) could be used as error parameter.

Example 10.5. Signed integer adder
Figure  10.3a shows a fully equipped N-bit signed integer adder, where a and b are the 
addends, cin and cout are the carry-in and carry-out bits, sum is the core result, and oflow 
is an overflow flag.

Note that this adder contains all optional outputs (cout, oflow, and sum(N)), as seen in 
section 1.6.3; even though this kind of cell is usually not built with all three (see figure 1.21b), 
the purpose here is to practice with all possibilities.

The time behavior is illustrated in figure 10.3b, where the values of a and b are {−8, 0, 
7, −8, 0, 7} and {−8, −7, 5}, respectively. It is left to the reader to complete it for later com-
parison against simulation results obtained after synthesizing the code that follows. (Signed 
integer addition was reviewed in section 1.6.3, and signed/unsigned types were studied in 
section 7.6.3).
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Since this is an arithmetic circuit, we will follow the suggestions presented above. The 
right type is signed, and the only operator to be used is “+”. Consulting table 9.4, we observe 
in comment (8) that the size of the output must be the same as that of the largest input.

A VHDL solution is presented below. To make it clear, a step-by-step code is shown. The 
packages list (lines 2–4) contains the packages std_logic_1164 (because standard-logic types are 
employed for the circuit ports) and numeric_std (because type signed is used in the computa-
tions). In the entity declaration (lines 6–14), a generic constant (line 8; N is called NUM_BITS in 
the code) defines the number of bits in the multi-bit signals. Also, to make it clear that sum(N) 
is an optional output, it is called sumMSB (sum’s new most significant bit, if used) in the code.

The architecture body (lines 16–30) starts with the declaration of a signal called sum_sig 
(line 17), with NUM_BITS + 1 bits, which will be used to hold the sum temporarily. The sum 
(line 21) employs sign-extension and conversion to signed. The MSB of this extended sum 
(with NUM_BITS + 1 bits) is sumMSB (line 26), while all other bits constitute the original sum 
(line 25). Notice that the sum is converted to std_logic_vector before being sent out. Finally, 
the cout (line 27) and oflow (line 28) outputs are calculated using the equations of figure 1.22a.

	1	 ----------------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
	4	 use ieee.numeric_std.all;
	5	
	6	 entity adder_signed is
	7	    generic (
	8	       NUM_BITS: integer := 4); 
	9	    port (
	10	       a, b: in std_logic_vector(NUM_BITS-1 downto 0);
	11	       cin: in std_logic;
	12	       sum: out std_logic_vector(NUM_BITS-1 downto 0);
	13	       cout, oflow, sumMSB: out std_logic);
	14	 end entity;

Figure 10.3
Signed adder of example 10.5.
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	15	
	16	 architecture suggested of adder_signed is
	17	    signal sum_sig: signed(NUM_BITS downto 0);
	18	 begin
	19	
	20	    --Sign-extension, conversion to signed, and addition:
	21	    sum_sig <= signed(a(NUM_BITS-1) & a) +  signed(b) + cin;
	22	    --sum_sig <= resize(signed(a), NUM_BITS+1) +  signed(b) + cin; 
	23	
	24	    --Conversion to std_logic_vector plus single-bit calculations:
	25	    sum <= std_logic_vector(sum_sig(NUM_BITS-1 downto 0));
	26	    sumMSB <= sum_sig(NUM_BITS);
	27	    cout <= a(NUM_BITS-1) xor b(NUM_BITS-1) xor sumMSB;
	28	    oflow <= sumMSB xor sum(NUM_BITS-1);
	29	
	30	 end architecture;
	31	 ----------------------------------------------------------------------

Four additional observations about line 21 follow. First, an equivalent construction using 
the resize function (section 7.9.3) is shown in line 22. Second, table 9.4 tells us that a signed 
value can be added to another signed, integer, or std_ulogic value, so the fact that the 
sum includes a single-bit value is fine, but that was not so before VHDL-2008; if your com-
piler does not support that feature yet, a solution is to extend that bit by using ('0' & cin) 
or ('0', cin). The third observation is that only one of the inputs needs sign-extension 
because the output of addition for signed is required to have the same number of bits as the 
largest input. The final observation regards the number of adders: even though two sums 
appear in line 21, the compiler will understand that the last addend is just a carry bit, so 
a single adder with carry-in port will be inferred. Just out of curiosity, below is a solution 
using a single “+” operator, where an extra bit is appended at the right end of a and b, with 
cin in one addend and a '1' in the other (cin in both would also do). Observe below that 
sum_sig (line 17) has now NUM_BITS + 2 bits and that the sum’s LSB is ignored in all output 
equations.

	16	 architecture with_one_sum of adder_signed is
	17	    signal sum_sig: signed(NUM_BITS+1 downto 0);
	18	 begin
	19	    sum_sig <= signed(a(NUM_BITS-1) & a & cin) + signed(b & '1');
	20	    sum <= std_logic_vector(sum_sig(NUM_BITS downto 1));
	21	    sumMSB <= sum_sig(NUM_BITS);
	22	    cout <= a(NUM_BITS-1) xor b(NUM_BITS-1) xor sumMSB;
	23	    oflow <= sumMSB xor sum(NUM_BITS-1);
	24	 end architecture;
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Example 10.6. Floating-point adder and multiplier
This example shows the implementation of a floating-point (FP) adder/multiplier. Since this 
too is an arithmetic circuit, the suggestions presented above will again be followed. (FP arith-
metic was reviewed in section 1.6.5 and FP types were seen in section 7.6.5.)

The data type now is float, and the operators involved in this circuit are “+” and “*”. 
Consulting table 9.4, we see in comment (28) that for both operators the output’s upper and 
lower bounds must be equal to the inputs’ largest and smallest bounds, respectively (though 
the compiler might require only the resulting vector length to be obeyed).

The first solution below employs the type float directly in the circuit ports (lines 7–8). 
The only package then needed in the packages list (lines 2–3) is float_pkg, which employs the 
default FP parameters (for example, the rounding style is roundTiesToEven, explained in sec-
tion 1.6.5; as seen in section 7.6.5, the generic package is called float_generic_pkg). The inputs 
and outputs range is “5 downto −3” (lines 7–8), so the data representation is (S)(EEEEE)(FFF) 
for all, including the sum and multiplication (computed in lines 13–14). Because the expo-
nent uses Ewidth = 5 bits, this circuit parameters are (see section 1.6.5) Emin = 1 (always), Emax = 30, 
MAX = 31, BIAS = 15, and 2−14 ≤ dec ≤ (2 − 2−3)215.

In the second solution below, standard-logic types are employed for the circuit ports (lines 
8–9), which are generally preferred. Note the inclusion of the std_logic_1164 package (line 3) 
in the packages list.

It is also important to mention that free compiler versions usually have less VHDL support 
than their paid counterparts, so FP support might be available only in the latter.

	1	 -------------------------------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.float_pkg.all;
	4	
	5	 entity fp_adder_multiplier is
	6	    port (
	7	       a, b: in float(5 downto -3);
	8	       sum, prod: out float(5 downto -3));
	9	 end entity;   
	10	
	11	 architecture fp_arithmetic of fp_adder_multiplier is
	12	 begin
	13	    sum <= a + b;
	14	    prod <= a * b;
	15	 end architecture;
	16	 -------------------------------------------------------------------------------------
	
	1	 -------------------------------------------------------------------------------------
	2	 library ieee;
	3	 use ieee.std_logic_1164.all;
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	4	 use ieee.float_pkg.all;
	5	
	6	 entity fp_adder_multiplier is
	7	    port (
	8	       a, b: in std_logic_vector(8 downto 0);         --for float(5 downto -3)
	9	       sum, prod: out std_logic_vector(8 downto 0));  --for float(5 downto -3)
	10	 end entity;   
	11	
	12	 architecture fp_arithmetic of fp_adder_multiplier is
	13	 begin
	14	    sum <= to_std_logic_vector(to_float(a, 5, 3) + to_float(b, 5, 3));
	15	    prod <= to_std_logic_vector(to_float(a, 5, 3) * to_float(b, 5, 3));
	16	 end architecture;
	17	 -------------------------------------------------------------------------------------

Simulation results for the adder part of the code above are shown in figure  10.4. The 
inputs are: a = (0)(11100)(010), so E = 28 and F = 1/4; b1 = (0)(11101)(001), so E = 29 and F = 1/8; 
b2 = (0)(11101)(100), so E = 29 and F = 1/2; and b3 = (0)(11101)(110), so E = 29 and F = 3/4. BIAS 
is 15 in all cases. Note that these values are precisely those employed in the last example 
of section  1.6.5, from which the expected results, after truncation and rounding (using 
the roundTiesToEven style, which is the default and recommended style for FP arithmetic), 
are: sum1 = a + b1 = 1.110·214 = (0)(11101)(110); sum2 = a + b2 = 1.000·215 = (0)(11110)(000); and 
sum3 = a + b3 = 1.010·215 = (0)(11110)(010). These values are in perfect agreement with the 
simulation results of figure 10.4.

10.8  Additional Examples and Exercises

These are in chapter 11, which is dedicated entirely to practicing with concurrent code. The 
list of all enumerated examples and exercises in this edition of the book is in appendix M.

Figure 10.4
Simulation results from the adder part of example 10.6.


