Finite State Machines in Hardware
Contents

Preface xi
Acknowledgments xiii

1 The Finite State Machine Approach 1
 1.1 Introduction 1
 1.2 Sequential Circuits and State Machines 1
 1.3 State Transition Diagrams 4
 1.4 Equivalent State Transition Diagram Representations 6
 1.5 Under- and Overspecified State Transition Diagrams 8
 1.6 Transition Types 11
 1.7 Moore-to-Mealy Conversion 12
 1.8 Mealy-to-Moore Conversion 14
 1.9 Algorithmic State Machine Chart 15
 1.10 When to Use the FSM Approach 16
 1.11 List of Main Machines Included in the Book 17
 1.12 Exercises 18

2 Hardware Fundamentals—Part I 21
 2.1 Introduction 21
 2.2 Flip-Flops 21
 2.3 Metastability and Synchronizers 24
 2.4 Pulse Detection 28
 2.5 Glitches 29
 2.6 Pipelined Implementations 32
 2.7 Exercises 33

3 Hardware Fundamentals—Part II 39
 3.1 Introduction 39
 3.2 Hardware Architectures for State Machines 39
 3.3 Fundamental Design Technique for Moore Machines 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Fundamental Design Technique for Mealy Machines</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Moore versus Mealy Time Behavior</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>State Machine Categories</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>State- Encoding Options</td>
<td>49</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Sequential Binary Encoding</td>
<td>49</td>
</tr>
<tr>
<td>3.7.2</td>
<td>One-Hot Encoding</td>
<td>50</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Johnson Encoding</td>
<td>50</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Gray Encoding</td>
<td>50</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Modified One-Hot Encoding with All-Zero State</td>
<td>51</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Other Encoding Schemes</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>The Need for Reset</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Safe State Machines</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Capturing the First Bit</td>
<td>56</td>
</tr>
<tr>
<td>3.11</td>
<td>Storing the Final Result</td>
<td>58</td>
</tr>
<tr>
<td>3.12</td>
<td>Multimachine Designs</td>
<td>60</td>
</tr>
<tr>
<td>3.13</td>
<td>State Machines for Datapath Control</td>
<td>62</td>
</tr>
<tr>
<td>3.14</td>
<td>Exercises</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Design Steps and Classical Mistakes</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Classical Problems and Mistakes</td>
<td>73</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Skipping the State Transition Diagram</td>
<td>73</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Wrong Architecture</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Incorrect State Transition Diagram Composition</td>
<td>74</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Existence of State Bypass</td>
<td>75</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Lack of Reset</td>
<td>75</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Lack of Synchronizers</td>
<td>76</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Incorrect Timer Construction</td>
<td>76</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Incomplete VHDL/SystemVerilog Code</td>
<td>76</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Overregistered VHDL/SystemVerilog Code</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Design Steps Summary</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>Regular (Category 1) State Machines</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Architectures for Regular (Category 1) Machines</td>
<td>82</td>
</tr>
<tr>
<td>5.3</td>
<td>Number of Flip-Flops</td>
<td>84</td>
</tr>
<tr>
<td>5.4</td>
<td>Examples of Regular (Category 1) Machines</td>
<td>84</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Small Counters</td>
<td>84</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Parity Detector</td>
<td>85</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Basic One-Shot Circuit</td>
<td>86</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Temperature Controller</td>
<td>88</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Garage Door Controller</td>
<td>89</td>
</tr>
</tbody>
</table>
5.4.6 Vending Machine Controller 90
5.4.7 Datapath Control for an Accumulator 91
5.4.8 Datapath Control for a Greatest Common Divisor Calculator 93
5.4.9 Generic Sequence Detector 95
5.4.10 Transparent Circuits 96
5.4.11 LCD, I^2C, and SPI Interfaces 97

5.5 Exercises 97

6 VHDL Design of Regular (Category 1) State Machines 105
6.1 Introduction 105
6.2 General Structure of VHDL Code 105
6.3 VHDL Template for Regular (Category 1) Moore Machines 107
6.4 Template Variations 111
 6.4.1 Combinational Logic Separated into Two Processes 111
 6.4.2 State Register Plus Output Register in a Single Process 112
 6.4.3 Using Default Values 112
 6.4.4 A Dangerous Template 113
6.5 VHDL Template for Regular (Category 1) Mealy Machines 114
6.6 Design of a Small Counter 116
6.7 Design of a Garage Door Controller 120
6.8 Design of a Datapath Controller for a Greatest Common Divisor Calculator 123
6.9 Exercises 126

7 SystemVerilog Design of Regular (Category 1) State Machines 129
7.1 Introduction 129
7.2 General Structure of SystemVerilog Code 129
7.3 SystemVerilog Template for Regular (Category 1) Moore Machines 130
7.4 SystemVerilog Template for Regular (Category 1) Mealy Machines 133
7.5 Design of a Small Counter 135
7.6 Design of a Garage Door Controller 137
7.7 Design of a Datapath Controller for a Greatest Common Divisor Calculator 140
7.8 Exercises 141

8 Timed (Category 2) State Machines 143
8.1 Introduction 143
8.2 Architectures for Timed (Category 2) Machines 144
8.3 Timer Interpretation 146
 8.3.1 Time Measurement Unit 146
 8.3.2 Timer Range 146
 8.3.3 Number of Bits 146
11 Recursive (Category 3) State Machines 221
11.1 Introduction 221
11.2 Recursive (Category 3) State Machines 222
11.3 Architectures for Recursive (Category 3) Machines 223
11.4 Category 3 to Category 1 Conversion 224
11.5 Repetitively Looped Category 3 Machines 225
11.6 Number of Flip-Flops 226
11.7 Examples of Recursive (Category 3) State Machines 226
 11.7.1 Generic Counters 226
 11.7.2 Long-String Comparator 228
 11.7.3 Reference-Value Definer 229
 11.7.4 Reference-Value Definer with Embedded Debouncer 231
 11.7.5 Datapath Control for a Sequential Multiplier 232
 11.7.6 Sequential Divider 234
 11.7.7 Serial Data Receiver 236
 11.7.8 Memory Interface 237
11.8 Exercises 240

12 VHDL Design of Recursive (Category 3) State Machines 245
12.1 Introduction 245
12.2 VHDL Template for Recursive (Category 3) Moore Machines 245
12.3 VHDL Template for Recursive (Category 3) Mealy Machines 248
12.4 Design of a Datapath Controller for a Multiplier 249
12.5 Design of a Serial Data Receiver 252
12.6 Design of a Memory Interface 256
12.7 Exercises 261

13 SystemVerilog Design of Recursive (Category 3) State Machines 265
13.1 Introduction 265
13.2 SystemVerilog Template for Recursive (Category 3) Moore Machines 265
13.3 SystemVerilog Template for Recursive (Category 3) Mealy Machines 267
13.4 Design of a Datapath Controller for a Multiplier 268
13.5 Design of a Serial Data Receiver 271
13.6 Design of a Memory Interface 273
13.7 Exercises 278

14 Additional Design Examples 279
14.1 LCD Driver 279
 14.1.1 Alphanumeric LCD 279
 14.1.2 Typical FSM Structure for Alphanumeric LCD Drivers 283
 14.1.3 Complete Design Example: Clock with LCD Display 284