Circuit Design with VHDL e 3" edition e Volnei A. Pedroni e MIT Press, April 2020

Errata, Clarifications, and Additional Details (rev.2)
1. ERRATA

Page Correction

Replace figure 1. 22c W|th this:

E e(N) ; cout
cin—— I
T _] : offow
18 (c) av 130)'!‘ Unsigned a(N 1)3)D:k
B(N-A:0)mim adder b(N-1) ; S(N-1:0)
Signed adderJ

Add the following at the end of the caption for figure 2.35: “The number of bits is for the worst-case scenario

63
(arbitrary unsigned values).”

87 In the transitions of figure 3.19a, it should be i instead of t.

Below, the keyword “is” is missing before the parenthesis:

195 type type_name (type_values_list);

306 In process P1, the line is_max <="'0"; should be added between lines 10 and 11.

In example 13.3, the number of bits of figure 2.35a (page 63) were employed, which are for the worst-case

2
320 scenario, i.e., for arbitrary unsigned values. That was clarified and modified in sections 3.1 and 3.2 ahead.

337 | Infigures 13.7a-b, it should be g¢g.9, and g.1q,, respectively.

Below, it should be “functions”, not “variables”:
14.4 Procedure

Compared to functions, procedures are used to implement multi-output problems. More-
over, procedures are stand-alone statements, while|variables jare used as part of expressions.

359

403 | About Mealy machines: See in the clarifications (next table), the important Note to be included in figure 15.4.

421 | In exercise 16.2, relax the requirement “dout must be guaranteed to be glitch free.”

458 In line 105 of code, it should be when 3 to 5

534 | Inline 9 of both codes (for character 6) it should be "0100000".

2. CLARIFICATIONS

Page Comment
63 The number of bits in figure 2.35a are for the worst-case scenario, which is for arbitrary unsigned values. For
signed values, with arbitrary or fixed coefficients, and for chain- or tree-type architecture, see section 3.1 ahead.
Replace the paragraph in the box below with that that follows.
Notice clearly falls in the situation described in sect he
state dlagram is useful to expose the same time, it tells us that a solution
89 can b ented without using the (tormahty of the) FSM ap
This machine could be modified to avoid returning to idle when a request is waiting. Calling Arb1 that in figure
3.21b and Arb2 the new arbiter, and calling n and t the number of inputs and of transitions, respectively, the
following is left as an exercise to the reader: (a) Draw the state diagram for Arb2 (for n=3); (b) Write the equation
for t in each arbiter; (c) Is it viable to sketch a state diagram in each case for n=8?
171 Table 7.8 includes all functions available in the math_real package, but it has a line repeated (**).
There is also a procedure in that package, called uniform, useful for generating random numbers in simulation.
Replace the entire description in exercise 9.4 with the following:
240 You are given 12 equations of the form y=f(a,b), where y, a, and b are all of type INT, with a and b in the -16 to 15

range. Determine, for each equation, the minimum and maximum values of y, disregarding comments (1)-(7) of
table 9.4 (the reason for that is that INT has no formal limits, so the comments are just suggested limits).

270 | Some might find Example 11.3 too detailed; an alternative version is offered in section 3.3 ahead.

320 | See the comments regarding example 13.3 in sections 3.1 and 3.2 ahead.

In exercise 13.37, the number of coefficients is 11 (so M=10) and the number of bits in the input and in the

47
3 coefficients are N,=N,=4. The filter is signed, and the coefficients, being programmable, are arbitrary (as opposed

Circuit Design with VHDL e 3" edition e Volnei A. Pedroni e MIT Press, April 2020

to fixed). The number of bits along the chain (lower part of figure 2.36) is Nj = Ny + Ny —1+(Iogz(i +2)—| (0<i<M).

Replace parts (a) and (b) with the following:
a) Implement it using VHDL, for arbitrary signed coefficients. Observe notes 3 and 4 above.
b) Show simulation results, using the same parameters of example 13.3, with comments. Observe note 5 above.

In topic (3) of page 374, an important recommendation for Mealy is missing; it is for the implementation of

374
recursive machines without latency, which leads to the construction of figure 15.4c.
To make section 15.6 clearer, include Note 1 below in figure 15.4:
(a) Default and '____ FSM _,,.
reference ! (Moore) :
(b) L" FSM E —b-i
i (Moore) : N i
i v o i
: Note 1 | i
) — FSM H :
i (Mealy) > : i
: o
: FSM ' .
403 @ = ey M i
: e 1 :
time : 1% Tose =+— 1% Tk —“:

Suggested templates

.) Machine category
Registered Total Figure | Machine
outputs time | above type (1 (2) (3.1) (3.2)
Regular Timed Recursive | Recursive-timed

None 1% Tew (a) Moore TlorT2 T10 - ——
All 2xTew (b) Moore T3or T4 T -—--
1% Tew (c) Mealy T8orT9 T14 T8 or T9 T14
Some 1% Tew (d) Mixed TS or T6 T12 T5orT6 T12

—>| Note 1: For the case in figure (c), with the output register removed, use template T7 if Regular or T13 if Timed.

3. ADDITIONAL DETAILS

3.1 Number of bits in signed multiplier-adder arrays (pages 63, 320)

In figure 2.35 (page 63) and example 13.3 (page 320), the number of bits employed where for the worst-case scenario, i.e., for
arbitrary unsigned values. The numeric values illustrating the implementation, however, include positive and negative
coefficients, and they are stored in ROM-like memory, so a signed filter with fixed coefficients is in principle implied. Table 1
presents the equations for all signed cases, followed by the adjusted code for example 13.3 in the next section.

Circuit Design with VHDL e 3" edition e Volnei A. Pedroni e MIT Press, April 2020

Table 1. Minimum number of bits in signed multiplier-adder arrays (Fig. 2.35).

Architecture | Polarity Coeff. Position Equations #
Bits along . .
Nj =Ny +Np—1+|log, (i+2 0<i<M
) the chain i =TT [9 ()1 () (1)
Arbitrary Bits at
Ny =Ny +Np—1+]|log, (M +2
the output y = x* b (9 ()1 (2)
N Ny +Np —1+[log, (i+2)] while Nj <Ny,
- 3
Chain-type . " Else Ny (equation below) 3
. Signed Bits along
(Fig. 2.35a) the chai .
. € chain lrlOQZ (|bmin|)—‘+1 if |bmin|>bmax
Fixed Where Np = (4)
[109; (Brax +1) |+1 if [Dmin| <brax
. M
Bits at
Ny =Ny +| lo bi|+1
the output ym X { gz(%' '| ﬂ ()
Bits along . .
N: =Ny +Np+ 0<j<L, L=|log,(M +1
the tree j=Nx+Np+] (J [og, ()1) (6)
Arbitrary Rits at N = Ny +Np +L if M+1 is a power-of-two @)
the output YNy +Np+L-1 otherwise
Tree-type Ny +Np+j whileNj <N, (0< j<L
eevp Signed e al _NxNp+ whileNj <Ny (0<j<L)
(Fig. 2.35b) Its along J 7) Else Ny, (equation below)
y (8)
the tree
Fixed Where N is given by eq. (4)
Bits at Ny = Ny + | Togs | S'Jor| | +1 (©)
the output y X 2 > !
M = Filter order (= number of coefficients — 1) Ny = Number of bits in the output signal (y)
N, = Number of bits in the input signal (x) L = Number of sum layers in the tree-type array (L=|—Iog2(M+1)—|
N, = Number of bits in the filter coefficients i = Chain stage index, horizontal (i=0 to M, Fig. 2.35a)
N; = Number of bits along the chain or tree j =Tree layer index, vertical (j=0 to L, Fig. 2.35b)

3.2 Reviewed version of Example 13.3: FIR filter with fixed coefficients (page 320)

Using equations (3)-(5) of Table 1, we get N,=4, Ny=8, and N,=10. Therefore, the number of bits along the chain starts with 8
and can be stopped when it reaches 10. This modification (which is the only real modification) is in line 11 of the code below.
Lines 9-10 are just a splitting of the original line 10 to make it clear that N, and N, can be different. The rest are just
adjustments to comply with the new parameter names.

T
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
L 3 math nogl “11;
5
6 entity fir_filter is
7 generic (
8 NUM_COEF: natural := 11; --number of filter coefficients
9 BITS_COEF: natural := 4; --number of bits in the coefficients
10 BITS_IN: natural := 4; --number of bits in the input signal
11 BITS_OUT: natural := 10); --number of bits in the output signal
12 port (
13 clk, rst: in std_logic;
14 x: in std_logic_vector(BITS_IN-1 downto 0);
15 y: out std_logic_vector(BITS_OUT-1 downto 0));
16 end entity;
17
18 architecture fixed_coeff_chain_type of fir_filter is
19
20 --Filter coefficients (ROM-type memory with integer as base type):
21 type int_array is array (© to NUM_COEF-1) of integer range
22 -2%*(BITS_COEF-1) to 2**(BITS_COEF-1)-1;
23 constant coef: int_array := (-8, -5, -5, -1, 1, 2, 2, 3, 5, 7, 7);
24
25 --Internal signals (arrays with signed as base type):
26 type signed_array is array (natural range <>) of signed;
27 signal shift_reg: signed_array(1l to NUM_COEF-1)(BITS_COEF-1 downto ©0);
28 signal prod: signed_array(® to NUM_COEF-1)(BITS_IN+BITS_COEF-1 downto ©0);
29 signal sum: signed_array(© to NUM_COEF-1)(BITS_OUT-1 downto 9);

Circuit Design with VHDL e 3" edition e Volnei A. Pedroni e MIT Press, April 2020

30

31 begin

32

33 --Shift register:

34 process (clk, rst)

35 begin

36 if rst then

37 shift_reg <= (others => (others => '0'));

38 elsif rising_edge(clk) then

39 shift_reg <= signed(x) & shift_reg(1l to NUM_COEF-2);
40 end if;

41 end process;

42

43 --Multipliers:

44 prod(0) <= coef(@) * signed(x);

45 mult: for i in 1 to NUM_COEF-1 generate

46 prod(i) <= to_signed(coef(i), BITS_COEF) * shift_reg(i);
47 end generate;

48

49 --Adder array:

50 sum(@) <= resize(prod(®©), BITS_OUT);

51 adder: for i in 1 to NUM_COEF-1 generate

52 sum(i) <= sum(i-1) + prod(i);

53 end generate;

54 y <= std_logic_vector(sum(NUM_COEF-1));

55

56 end architecture;

LY A e e e e L e e L e

3.3 Alternative version for Example 11.3: Sine calculator (page 270)

This example illustrates how continuous functions and ROM-type memories can be implemented in VHDL. For that, the sine
calculator of figure 11.4a is constructed, which has angle (any integer in the 0-to-360 range) as input and sin(angle) as output.

This kind of design relies on two parameters: the number of coefficients employed to represent the sine wave and the
number of bits used to represent each coefficient. A corresponding table can be easily derived manually or using a tool like
Matlab, as illustrated for the latter in figure 11.4b, with 32 samples per period (=8 per quadrant). The last column shows the
version with integers; since 10 bits are employed, they vary from —(2°-1)=-511 (representing —1) to 2°-1=511 (representing
+1). The way the data should be interpreted is illustrated in figure 11.4c. Because there is no relationship between the number
of samples and the number of input values, a conversion from one range to the other is needed.

Matlab sine table for 32 samples/period.

" 'T;‘:;deﬁs Float 64 bits Fixed 10 bits '”{?‘.’f';[gabt'}“
o - o]))
angle | calculator | sin(angle) 1 ©.195090322016128 | ©.195312500 100
2 9.382683432365090 9.3828125e80 196
3 ©.555570233019602 | ©.554687500 284
(@) (b) 4 ©.707106781186548 | ©.707031250 361
5 ©.831469612302545 | ©.832031250 425
6 ©.923879532511287 | ©.923828125 472
7 ©.089785280403230 | 0.980468750 o1
, , _ , : 8 1| ©.998046875 i1
1 — 9 ©.980785280403230 | ©.980468750 se1
| 10 ©.923879532511287 | ©.923828125 472
11 ©.831469612302545 | ©.832031250 425
1 12 ©.707106781186548 | ©.707031250 361
13 ©.555570233019602 | ©.554687500 284
] 14 ©.382683432365090 | ©.382812500 196
E | 15 B8.195898322816129 @.195312588 188
> (_ | 16 [])
&0 _J I - 17 ©.195000322016128 | -0.195312500 | -1e@
€ | l 18 | -0.382683432365090 | -0.382812500 | -196
@ h}_ﬁ 19 | -8.555570233019602 | -0.554687500 | -284
r n 20 8.787106781186548 -8.787e3125e -361
, L - 21 ©.831460612302545 | -0.832031250 | -425
22 | -8.923879532511287 | -0.923828125 | -472
- 1 23 | -0.980785288403230 | -0.980468750 | -501
al 24 1 1 511
. | i - ! 25 | -0.980785286403230 | -0.988468750 | -Sel
0 025 05 075 1 26 | -8.923879532511287 | -0.923828125 | -472
angle (x27) 27 | -e.831469612302546 | -9.832031258 | -425
28 -9.7871e6781186548 -9.787e3125e -361
(c) 29 | -0.555570233019602 | -0.554687500 | -284
30 | -0.382683432365090 | -0.382812500 | -196
31 | -8.195000322016129 | -8.195312500 | -108

Figure 11.4. Sine calculator of example 11.3.

A decision to be made here is whether to store in the ROM only the samples for one quadrant (saving memory) or for all
four quadrants (reducing the need for comparators, improving the speed and also saving hardware). The VHDL implementation
below employs the former (harder to do). The number of samples is 32 per quadrant (line 4) and the number of bits to
represent each sample is 10 (line 5). SINE_TABLE (lines 15-19) is the local ROM-type memory that holds the 32+1 sample values

Circuit Design with VHDL e 3" edition e Volnei A. Pedroni e MIT Press, April 2020

(it could be 32 values, but that would add another comparator). Notice that, for clarity, integers were employed in the circuit
ports (it is left to the reader to change them to std_logic_vector). Corresponding simulation results are depicted in figure 11.5.

i R LT T T L T T T

2 entity sine_calculator is

3 generic (

4 NUM_COEFF: natural := 32; --Attention: number of coefficients per quadrant

5 NUM_BITS: natural := 10);

6 port (

7 angle: in natural range 0 to 360;

8 sine: out integer range -2**NUM_BITS to 2**NUM_BITS-1);

9 end entity;

10

11 architecture with_sine_rom of sine_calculator is

12

13 type integer_array is array (0 to NUM_COEFF) of natural range © to 2**NUM_BITS-1;

14

15 constant SINE_TABLE: integer_array := (

16 e, 25, 50, 75, 100, 124, 148, 172,

17 196, 218, 241, 263, 284, 304, 324, 343,

18 361, 379, 395, 410, 425, 438, 451, 462,

19 472, 481, 489, 496, 501, 505, 509, 510, 511);

20

21 begin

22

23 with angle select

24 sine <=

25 SINE_TABLE((NUM_COEFF*(angle+1))/90) when 0 to 90,

26 SINE_TABLE((NUM_COEFF*(181-angle))/90) when 91 to 180,

27 -SINE_TABLE((NUM_COEFF*(angle-179))/98) when 181 to 270,

28 -SINE_TABLE ((NUM_COEFF*(361-angle))/90) when others;

29

30 end architecture;

R e e
Name 0ps BD.Pns ‘IEDiDns 24DiDns 3ZDiDns 4DDiDn5 4BDiDns SEDiDns 64DiDn5 ?EDiDns SDDiDns SSDiDns SEDiDns

B > angle O h 2% ‘s %89 % o0 % 91 % o2 X 180 % 182 % 270 X 1389 % 360

= sine 0*25)'(510)(511*511}(511 ’(510“0*-25“-511‘0']

Figure 11.5. Simulation results from example 11.3.

