
Circuit Design with VHDL 3rd edition Volnei A. Pedroni MIT Press, April 2020

 1

Errata, Clarifications, and Additional Details (rev.3)

1. ERRATA
Page Correction

18

Replace figure 1.22c with this:

63
Add the following at the end of the caption for figure 2.35: “The number of bits is for the worst-case scenario
(arbitrary unsigned values).”

87 In the transitions of figure 3.19a, it should be i instead of t.
156,
158,
161

The maximum range for the type integer, which is from –(231 – 1) to +(231 – 1) (as seen in editions 1 and 2 of the
book), was brought over incorrectly as –231 to +(231 – 1).

195
Below, the keyword “is” is missing before the parenthesis:

198

Remove the line marked below:

306 In process P1, the line is_max <= '0'; should be added between lines 10 and 11.

320
In example 13.3, the number of bits of figure 2.35a (page 63) were employed, which are for the worst-case
scenario, i.e., for arbitrary unsigned values. That was clarified and modified in sections 3.1 and 3.2 ahead.

337 In figures 13.7a-b, it should be q0q1q2 and q1q2, respectively.

359

 Below, it should be “functions”, not “variables”:

403 About Mealy machines: See in the clarifications (next table), the important Note to be included in figure 15.4.
421 In exercise 16.2, relax the requirement “dout must be guaranteed to be glitch free.”
456 clk_vga (line 17 of code) should be an internal signal, so place its declaration after line 25.
458 In line 105 of code, it should be when 3 to 5
534 In line 9 of both codes (for character 6) it should be "0100000".

2. CLARIFICATIONS

Page Comment

63
The number of bits in figure 2.35a are for the worst-case scenario, which is for arbitrary unsigned values. For
signed values, with arbitrary or fixed coefficients, and for chain- or tree-type architecture, see section 3.1 ahead.

89

Replace the paragraph in the box below with that that follows.

 This machine could be modified to avoid returning to idle when a request is waiting. Calling Arb1 that in figure
3.21b and Arb2 the new arbiter, and calling n and t the number of inputs and of transitions, respectively, the
following is left as an exercise to the reader: (a) Draw the state diagram for Arb2 (for n=3); (b) Write the equation
for t in each arbiter; (c) Is it viable to sketch a state diagram in each case for n=8?

171
Table 7.8 includes all functions available in the math_real package, but it has a line repeated (**).
There is also a procedure in that package, called uniform, useful for generating random numbers in simulation.

240 Replace the entire description in exercise 9.4 with the following:

Circuit Design with VHDL 3rd edition Volnei A. Pedroni MIT Press, April 2020

 2

You are given 12 equations of the form y=f(a,b), where y, a, and b are all of type INT, with a and b in the −16 to 15
range. Determine, for each equation, the minimum and maximum values of y, disregarding comments (1)-(7) of
table 9.4 (the reason for that is that INT has no formal limits, so the comments are just suggested limits).

270 Some might find Example 11.3 too detailed; an alternative version is offered in section 3.3 ahead.
320 See the comments regarding example 13.3 in sections 3.1 and 3.2 ahead.

347

In exercise 13.37, the number of coefficients is 11 (so M=10) and the number of bits in the input and in the
coefficients are Nx=Nb=4. The filter is signed, and the coefficients, being programmable, are arbitrary (as opposed
to fixed). The number of bits along the chain (lower part of figure 2.36) is i x bN N N log i i M 21 2 0 () .

Replace parts (a) and (b) with the following:
a) Implement it using VHDL, for arbitrary signed coefficients. Observe notes 3 and 4 above.
b) Show simulation results, using the same parameters of example 13.3, with comments. Observe note 5 above.

374
In topic (3) of page 374, an important recommendation for Mealy is missing; it is for the implementation of
recursive machines without latency, which leads to the construction of figure 15.4c.

403

To make section 15.6 clearer, include Note 1 below in figure 15.4:

456
Since in example 17.6 the signal clk_vga is not used outside the code domain, its declaration (in line 17) could be
replaced with an internal signal declaration, added to line 25: signal clk_vga, Hactive, ...: std_logic;

3. ADDITIONAL DETAILS

3.1 Number of bits in signed multiplier-adder arrays (pages 63, 320)
In figure 2.35 (page 63) and example 13.3 (page 320), the number of bits employed where for the worst-case scenario, i.e., for
arbitrary unsigned values. The numeric values illustrating the implementation, however, include positive and negative
coefficients, and they are stored in ROM-like memory, so a signed filter with fixed coefficients is in principle implied. Table 1
presents the equations for all signed cases, followed by the adjusted code for example 13.3 in the next section.

Circuit Design with VHDL 3rd edition Volnei A. Pedroni MIT Press, April 2020

 3

3.2 Reviewed version of Example 13.3: FIR filter with fixed coefficients (page 320)
Using equations (3)-(5) of Table 1, we get Nb=4, N0=8, and Ny=10. Therefore, the number of bits along the chain starts with 8
and can be stopped when it reaches 10. This modification (which is the only real modification) is in line 11 of the code below.
Lines 9-10 are just a splitting of the original line 10 to make it clear that Nx and Nb can be different. The rest are just
adjustments to comply with the new parameter names.

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;

entity fir_filter is
 generic (
 NUM_COEF: natural := 11; --number of filter coefficients
 BITS_COEF: natural := 4; --number of bits in the coefficients
 BITS_IN: natural := 4; --number of bits in the input signal
 BITS_OUT: natural := 10); --number of bits in the output signal
 port (
 clk, rst: in std_logic;
 x: in std_logic_vector(BITS_IN-1 downto 0);
 y: out std_logic_vector(BITS_OUT-1 downto 0));
end entity;

architecture fixed_coeff_chain_type of fir_filter is

 --Filter coefficients (ROM-type memory with integer as base type):
 type int_array is array (0 to NUM_COEF-1) of integer range
 -2**(BITS_COEF-1) to 2**(BITS_COEF-1)-1;
 constant coef: int_array := (-8, -5, -5, -1, 1, 2, 2, 3, 5, 7, 7);

 --Internal signals (arrays with signed as base type):
 type signed_array is array (natural range <>) of signed;
 signal shift_reg: signed_array(1 to NUM_COEF-1)(BITS_COEF-1 downto 0);
 signal prod: signed_array(0 to NUM_COEF-1)(BITS_IN+BITS_COEF-1 downto 0);
 signal sum: signed_array(0 to NUM_COEF-1)(BITS_OUT-1 downto 0);

Table 1. Minimum number of bits in signed multiplier-adder arrays (Fig. 2.35).

Architecture Polarity Coeff. Position Equations #
Bits along
the chain

 i x bN N N log i i M 21 2 0 () (1)
Arbitrary

Bits at
the output

 y x bN N N log M 21 2 (2)

Bits along
the chain

 while

Else (equation below)

x b i y
i

y

N N log i N N
N

N

21 2

 Where

 if

 if

min min max

max min max

b

log b b b
N

log b b b

2

2

1

1 1

(3)

(4)

Chain-type
(Fig. 2.35a)

Signed

Fixed

Bits at
the output

M
bi

i
y xN N log

2
0

1 (5)

Bits along
the tree , ()N j x bN N j j L L log M 20 1 (6)

Arbitrary
Bits at
the output

 if +1 is a power-of-two

 otherwise
x b

x b

N N L M
Ny N N L

 1
 (7)

Bits along
the tree

 while ()

Else (equation below)
x b j y

j
y

N N j N N j L
N

N

0

 Where Nb is given by eq. (4)

 (8)

Tree-type
(Fig. 2.35b)

Signed

Fixed

Bits at
the output

M

i
y x iN N log b

2
0

1 (9)

M = Filter order (= number of coefficients 1)
Nx = Number of bits in the input signal (x)
Nb = Number of bits in the filter coefficients
Ni = Number of bits along the chain or tree

Ny = Number of bits in the output signal (y)
L = Number of sum layers in the tree-type array (L=log2(M+1)
i = Chain stage index, horizontal (i=0 to M, Fig. 2.35a)
j = Tree layer index, vertical (j=0 to L, Fig. 2.35b)

Circuit Design with VHDL 3rd edition Volnei A. Pedroni MIT Press, April 2020

 4

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

begin

 --Shift register:
 process (clk, rst)
 begin
 if rst then
 shift_reg <= (others => (others => '0'));
 elsif rising_edge(clk) then
 shift_reg <= signed(x) & shift_reg(1 to NUM_COEF-2);
 end if;
 end process;

 --Multipliers:
 prod(0) <= coef(0) * signed(x);
 mult: for i in 1 to NUM_COEF-1 generate
 prod(i) <= to_signed(coef(i), BITS_COEF) * shift_reg(i);
 end generate;

 --Adder array:
 sum(0) <= resize(prod(0), BITS_OUT);
 adder: for i in 1 to NUM_COEF-1 generate
 sum(i) <= sum(i-1) + prod(i);
 end generate;
 y <= std_logic_vector(sum(NUM_COEF-1));

end architecture;

3.3 Alternative version for Example 11.3: Sine calculator (page 270)
This example illustrates how continuous functions and ROM-type memories can be implemented in VHDL. For that, the sine
calculator of figure 11.4a is constructed, which has angle (any integer in the 0-to-360 range) as input and sin(angle) as output.
 This kind of design relies on two parameters: the number of coefficients employed to represent the sine wave and the
number of bits used to represent each coefficient. A corresponding table can be easily derived manually or using a tool like
Matlab, as illustrated for the latter in figure 11.4b, with 32 samples per period (=8 per quadrant). The last column shows the
version with integers; since 10 bits are employed, they vary from –(29–1) = –511 (representing –1) to 29–1 = 511 (representing
+1). The way the data should be interpreted is illustrated in figure 11.4c. Because there is no relationship between the number
of samples and the number of input values, a conversion from one range to the other is needed.

Figure 11.4. Sine calculator of example 11.3.

 A decision to be made here is whether to store in the ROM only the samples for one quadrant (saving memory) or for all
four quadrants (reducing the need for comparators, improving the speed and also saving hardware). The VHDL implementation
below employs the former (harder to do). The number of samples is 32 per quadrant (line 4) and the number of bits to
represent each sample is 10 (line 5). SINE_TABLE (lines 15-19) is the local ROM-type memory that holds the 32+1 sample values

Circuit Design with VHDL 3rd edition Volnei A. Pedroni MIT Press, April 2020

 5

(it could be 32 values, but that would add another comparator). Notice that, for clarity, integers were employed in the circuit
ports (it is left to the reader to change them to std_logic_vector). Corresponding simulation results are depicted in figure 11.5.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

--
entity sine_calculator is
 generic (
 NUM_COEFF: natural := 32; --Attention: number of coefficients per quadrant
 NUM_BITS: natural := 10);
 port (
 angle: in natural range 0 to 360;
 sine: out integer range -2**NUM_BITS to 2**NUM_BITS-1);
end entity;

architecture with_sine_rom of sine_calculator is

 type integer_array is array (0 to NUM_COEFF) of natural range 0 to 2**NUM_BITS-1;

 constant SINE_TABLE: integer_array := (
 0, 25, 50, 75, 100, 124, 148, 172,
 196, 218, 241, 263, 284, 304, 324, 343,
 361, 379, 395, 410, 425, 438, 451, 462,
 472, 481, 489, 496, 501, 505, 509, 510, 511);

begin

 with angle select
 sine <=
 SINE_TABLE((NUM_COEFF*(angle+1))/90) when 0 to 90,
 SINE_TABLE((NUM_COEFF*(181-angle))/90) when 91 to 180,
 -SINE_TABLE((NUM_COEFF*(angle-179))/90) when 181 to 270,
 -SINE_TABLE((NUM_COEFF*(361-angle))/90) when others;

end architecture;
--

Figure 11.5. Simulation results from example 11.3.

