
4.1  Programmable Logic Devices

Programmable logic devices (PLDs) are a general denomination for integrated circuits
whose hardware is programmable. They are different from microprocessors, for example, for
which the tasks are programmable but for which the hardware is fixed; the hardware itself
is programmable in a PLD, so that with the same device many different circuits (including
microprocessors) can be implemented.

A major motivation for PLDs was the fact that at that time (1970s) most digital circuit boards
were constructed with several (or many) devices from the 74xx series, as illustrated in figure 4.1,
where the smaller devices are 74xx chips, which could potentially be replaced with a single PLD.

To achieve that purpose, programmable AND-OR arrays were employed as illustrated in
figure 4.2a, where the little circles represent programmable connections, so different bool-
ean functions can be implemented with the same hardware. This kind of implementation
is called sum of products (SOP) because it consists of a product layer (AND gates) followed
by a sum layer (OR gate). An example is shown in figure 4.2b, which implements the SOP
y = a  b + a′  b′  c  d (black circles indicate that the wires are interconnected; of course, a logic
1 must be applied to the unused inputs of the first AND gate, while a logic 0 must be applied
to at least one input of the third AND gate because it is not used in this example).

The first PLDs were introduced in the 1970s, as indicated in table 4.1, which summarizes their
evolution. The first two approaches were called programmable logic array (PLA), introduced
by Signetics in mid-1970s, and programmable array logic (PAL), introduced subsequently by
Monolithic Memories. These devices, however, had major limitations—the main of which was
the absence of flip-flops—so they were adequate for implementing only combinational circuits.

Such limitations were removed with the introduction of the generic array logic (GAL)
approach, by Lattice, in early 1980s, which contains a “macrocell” at every output, with

I am grateful to Stephen Trimberger, and his 30-year experience with Xilinx, for kindly reviewing and
helping improve this chapter. The reading of his paper “Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology” (Proceedings of the IEEE, vol. 3, March 2015) is highly recommended.

4  Review of Field Programmable Gate Arrays (FPGAs)

102	 Chapter 4

a flip-flop and several routing options (details will be shown in section 4.4). Some of such
devices, like the GAL16V8 chip (notice that this is the PLD in figure 4.1), gained substantial
popularity, finally bringing attention to the PLDs field.

Two companies, which eventually consolidated and today dominate the PLDs market, were
founded around that time. The first (Altera, 1983, now part of Intel) introduced the complex
PLD (CPLD) approach, which consists of relatively small arrays of moderate-size GAL-like blocks,
still with nonvolatile configuration memory but with other features like more I/O options and
more sophisticated clock and logic routing schemes. The second (Xilinx, 1984) introduced the
field programmable gate array (FPGA—this term was popularized later, by Actel) approach,
which consists essentially of a large matrix of small GAL-like macrocell clusters (hence a 2D
array instead of the 1D array of previous PLDs), with the additional important differences that
the programmable AND-OR array was replaced with a lookup table (LUT) and the nonvolatile
configuration memory was replaced with a volatile version (SRAM). The first devices of these
two companies, both delivered in 1984, are pictured in figure 4.3.

All cases listed in table 4.1 are described individually next. However, before we start, the
main strategies for holding the configuration data in PLDs are described.

Figure 4.1
Replacement of several 74xx devices with a single PLD.

Figure 4.2
Illustration of programmable AND-OR array of first PLDs.

Review of Field Programmable Gate Arrays (FPGAs)	 103

4.2  PLD Configuration Memories

A PLD is able to produce different circuits because the routing among its cells is programma-
ble (as in the example of figure 4.2b). The memory that holds such routing in place is called
configuration memory (see the EEPROM inset in figure 4.4), which (as already mentioned) is
nonvolatile in CPLDs and typically volatile in FPGAs. The technologies employed to build
such memories are listed in table 4.1; in summary, SPLDs and CPLDs employed mostly
EEPROM in the beginning and then Flash memory, while FPGAs employ mostly SRAM, with

Table 4.1
Historic view and some construction details of programmable logic devices

Type Architecture
Logic functions
implementation

Main config.
technologies

Introduced by

SPLD

PLA
AND-OR array, both
programmable

EEPROM Signetics, mid 1970s

PAL
AND-OR array, only
AND programmable

EEPROM
Monolitic Memories,
mid/late 1970s

GAL
AND-OR array, only
AND programmable

EEPROM Lattice, early 1980s

CPLD

Small array of
GAL-like blocks

AND-OR array, only
AND programmable

EPROM, then
EEPROM, then Flash

Altera, 1984

Simplified FPGA,
with nonvolatile
config. memory (*)

LUT
Altera, early/mid 2000s
(MAX II, then V and 10)

FPGA

Large array of small
GAL-like clusters,
with LUT in place
of AND-OR array
and volatile config.
memory

LUT

SRAM Xilinx, 1984

Antifuse Actel, late 1980s

Flash Several companies

(*) Not true CPLD, now correctly referred to as FPGA, just with nonvolatile configuration memory.

Figure 4.3
(a) First Altera CPLD (EP300) and (b) first Xilinx FPGA (XC2064), both from 1984.

104	 Chapter 4

nonvolatile memory (Flash or antifuse) used in just a few device families of some companies.
Brief comments on each technology are presented next.

The SRAM alternative, used in nearly all FPGAs, has the (minor) disadvantage of losing
the configuration when the power is turned off. To solve that problem, FPGA companies sell
low-cost nonvolatile memory to store the configuration data, which is retrieved and loaded
automatically by the FPGA itself every time the power is turned on.

The EEPROM approach, used in early PLDs, was replaced with Flash EEPROM (or Flash,
for short), which has the advantage of requiring just one transistor per cell, against two of
EEPROM (Flash does not need the cell-addressing transistor).

A less popular approach is antifuse technology, introduced by Actel (now Microsemi),
in the late 1980s. Contrary to regular fuses, which melt and so disconnect two wires when
traversed by a large current, an antifuse connects them because the material, after melt-
ing, becomes conductive. Another antifuse technology was introduced later by QuickLogic
(which refers to it as ViaLink), which connects two metal layers when melted instead of
silicon-polysilicon layers of Actel’s original antifuse.

Because SRAM, contrary to Flash and antifuse, can be manufactured in conventional
CMOS processes, it has lower cost and can take full advantage of process advancements.
Consequently, like Xilinx’s and Intel’s, nearly all FPGAs are now SRAM-based, including the
general-purpose ones from Microsemi and QuickLogic.

4.3  PAL and PLA Devices

Figure 4.4 illustrates the general architectures employed in PAL and PLA devices. In (a), a
programmable AND array is connected to a nonprogrammable OR gate, while in (b) both are
programmable. As already seen in figure 4.2, the little circles indicate programmable connec-
tions for which EEPROM was the typical solution.

Because the inputs to the OR gates are also programmable in PLAs, a larger variety of bool-
ean functions could be implemented than in arrays of same size in PALs. On the other hand,
the parasitic resistance and capacitance of the associated long lines caused PLAs to be slower
(besides consuming more silicon space). Nevertheless, due to the limitations mentioned in
section 4.1, neither approach was truly successful.

4.4  GAL Devices

GAL caused a major advancement in the acceptance of PLDs. It employed the PAL archi-
tecture plus a “macrocell” at each output. As already mentioned, a successful device in this
approach was the GAL16V8 PLD, depicted in figure 4.5a (and also at right in figure 4.1), with
sixteen inputs and eight outputs in a twenty-pin package (eight pins are bidirectional).

Details of the macrocell are shown in figure 4.5b. Note the following (very important)
improvements over PAL alone: an option for registered or unregistered output (due to the

Review of Field Programmable Gate Arrays (FPGAs)	 105

flip-flop); choice of inverted or non-inverted output (due to the XOR gate); tri-state output;
output sent back to the programmable array (so signals do not need to go out of the chip
and return when complex functions must be implemented, which lowers the speed and
consumes user pads); and direct connection between adjacent cells (with similar benefits).

Even though GAL too is now only of historical interest, understanding it is crucial because,
as will be seen, CPLDs and FPGAs are both related to GAL.

4.5  CPLD Devices

As seen in table 4.1, the CPLD approach was introduced by Altera, with its first device (EP300,
figure 4.3a) delivered in 1984. A simple way of describing a CPLD is as a relatively small array
of moderate-size GAL-like units (figure 4.6), still with nonvolatile configuration memory but
with some additional features compared to GAL, like superior internal interconnects, more
elaborate clock network, and more I/O options.

An example of true CPLD family (hence employing the general architecture of figure 4.6)
is the old MAX3000 series from Altera, constructed with n = 2, 4, 8, 16, or 32 GAL-like struc-
tures, each with sixteen macrocells (Altera called such structures logic array block, or LAB).
Consequently, the total number of macrocells (and therefore of flip-flops) in this family
ranged from 32 to 512. Another example of true CPLD family, this time from Xilinx, is the
old XC9500 series, constructed with n = 2, 4, 6, 8, 12, or 16 GAL-like structures, each with
eighteen macrocells.

Figure 4.4
General construction principle of (a) PAL and (b) PLA devices.

106	 Chapter 4

Figure 4.5
The Lattice GAL16V8 device: (a) General structure; (b) Macrocell.

Review of Field Programmable Gate Arrays (FPGAs)	 107

A major weakness of PAL-like devices (hence all PLDs seen so far) is that they do not scale
well with technology. Note in figure 4.4a that the number of programmable points quadruples
when the number of inputs (and the size of the AND layer) doubles; consequently, the device’s
growth with the transistors’ shrink factor is just linear instead of quadratic (for instance, the
resulting long, heavily loaded lines impact the speed and power consumption). As a result,
the original CPLD approach is now practically gone. Companies either do not manufacture
them anymore or use “simplified” FPGAs in their place, with nonvolatile memory employed
for the configuration switches (SRAM is replaced with Flash memory); so from a user’s perspec-
tive everything looks the same. Examples of such “CPLDs” are the Altera MAX II, MAX V, and
MAX 10 families, which are now (appropriately) referred to by Intel as FPGAs instead of CPLDs.
In summary, these are just simpler, lower-cost FPGAs but with nonvolatile configuration
memory (and the programmable AND/OR array replaced with a LUT, of course).

4.6  FPGA Devices

Contrary to CPLDs, the matrix-like (2D) architecture of FPGAs, with the large AND-OR arrays
(and their long, slow lines) replaced with compact LUTs, plus the use of SRAM in place of
Flash for configuration, allow FPGAs to scale well with technology, fully benefiting from the
huge progress in device fabrication processes. (Recall also that an N-input LUT can imple-
ment any N-variable Boolean function, which is not true in general for N-input AND-OR
arrays.) Indeed, still in the 1990s, FPGAs started replacing (small) ASICs. Eventually, with
the ample adoption of FPGAs in the communications infrastructure worldwide (for instance,
Cisco is among the largest FPGA consumers), FPGA became definitely a major player, being
now present in all sorts of applications, like machine learning, real-time video processing,
automotive, data centers, high-performance computing, etc. As a result, the PLDs market
now consists essentially only of FPGAs, described in this section.

Figure 4.6
Illustration of general CPLD architecture.

108	 Chapter 4

What was and what is an FPGA  Figure 4.7a illustrates how FPGAs looked like in the begin-
ning. Its core, the programmable logic array, was a relatively modest matrix of small GAL-like
macrocell clusters, but with LUTs in place of AND-OR arrays for computing the logic func-
tions and with SRAM in place of Flash for configuration. The additional features consisted
essentially of some user SRAM blocks, hardware multipliers (for DSP applications), the indis-
pensable PLLs (for clock manipulation, section 2.8), and a selection of basic I/O standards
(3.3V LVCMOS, LVDS, etc.).

The current situation of FPGAs is illustrated in figure 4.7b. The programmable logic array
is much larger, and so are the original features (listed under the logic array block). But even
more importantly, a number of very sophisticated units are now also available (listed at right
in figure 4.7b), including high-bandwidth memory (HBM), with the largest throughput in
the industry, the fastest transceivers in the market (for internet infrastructure, for example),
hard IPs for several communications standards (PCI Express, 10G XAUI, 100G Ethernet, etc.),
hard ARM processor cores (for general-purpose computing), and so on. In summary, an FPGA
is now a complex “ecosystem,” fabricated using the latest technology and targeting all sorts
of applications, as mentioned previously.

Below are some major features or advantages of FPGAs:

-  They allow the construction of solutions that would be technically inferior or economically
unviable with other approaches, notably when units from the list at right in figure 4.7b are
also involved.

-  Solutions can be tailored exactly as needed in the target application. This helps system
optimization, like higher speed through parallelism and lower power consumption by proper
circuit architecture and proper clock management. They are also great for doing math!

Figure 4.7
(a) FPGAs in the beginning and (b) FPGAs today.

Review of Field Programmable Gate Arrays (FPGAs)	 109

-  Designs are developed much faster and do not have the risk and non-recurring engineering
(NRE) cost of ASIC-based solutions.

-  Contrary to ASICs, designs can usually be easily modified. This might be needed to comply
with new standards or different application parameters.

-  Contrary to CPLDs, they can easily benefit from progress in device fabrication technology.

-  And, surprisingly, they are easily programmed! VHDL and Verilog languages, plus current
compilers and simulators, make this task very accessible. Simulation is also much simpler
than in ASICs because the hardware has already been validated.

The programmable logic array  The programmable logic array block seen in figures 4.7a and b is
described next. Figure 4.8 summarizes the current Intel architectural approach—used, for exam-
ple, in its top FPGA family, Stratix 10. It consists of a large matrix of LAB units, shown in (a).
The contents of each LAB are shown in (b), consisting of 10 adaptive logic module (ALM) units.
Finally, the contents of each ALM are depicted in (c), where the LUT (with eight inputs, sepa-
rable into two or more smaller LUTs) can be observed, followed by muxes and flip-flops, which
allow the outputs to be registered or unregistered and also allow direct connection between
adjacent units—helpful, for example, in the construction of fast arithmetic circuits. Notice the
overall similarity of purposes between this circuit and the original macrocell (figure 4.5b).

Figure 4.9 summarizes the current Xilinx architectural approach—used, for example, in its
top FPGA family, Virtex UltraScale+. Note in (a) that the general architecture is the same as
that in figure 4.8a, just with a different name for the logic block, here called configurable logic
block (CLB). The contents of each CLB are depicted in (b), consisting of two Slice units. Finally,
the contents of each Slice are shown in (c), where a LUT, muxes, and flip-flops can again be
observed in each of the eight circuits that comprise one Slice. For simplicity, these circuits too
will be individually (and informally) referred to as “macrocells” in table 4.4, shown later.

In summary, each LAB (figure 4.8) contains ten LUTs and forty DFFs, while each CLB (fig-
ure 4.9) contains sixteen LUTs and thirty-two DFFs. These are standard cells, so what changes
from one FPGA to another of the same family regarding the FPGA logic array is just the num-
ber of LABs or CLBs in the (big) matrix.

The construction of LUTs is illustrated in figure 4.10 (for N = 3 inputs), consisting simply
of an SRAM memory (of 1-bit words) plus a multiplexer. Because the memory contains 2N
addresses, any N-bit function can be implemented by it. For instance, note that the SOP
implemented in figure 4.10 for the given SRAM contents is y = a  b + a′  b′  c.

FPGA families  We list next details regarding the FPGA families from the two main vendors.
Table 4.2 shows all current Intel families, which are (from lowest to highest end) MAX,
Cyclone, Arria, and Stratix. It shows also the last two generations (V and 10) for each family
and the corresponding technologies. Note that the MAX devices employ old technologies
(180nm and 55nm), while Cyclone and Arria employ relatively new technologies (28nm and

110	 Chapter 4

Figure 4.8
Intel architecture for the logic part of Stratix 10 and other FPGAs: (a) FPGA grid (array of LAB blocks); (b)

LAB contents; (c) ALM contents.

Figure 4.9
Xilinx architecture for the logic part of UltraScale+ and other FPGAs: (a) FPGA grid (array of CLB blocks);

(b) CLB contents; (c) Slice contents.

Review of Field Programmable Gate Arrays (FPGAs)	 111

20nm), and Stratix 10 employs an even newer node (14nm). Observe also that the division
in series depends mainly on the additional features, of which the presence of transceivers
and/or hard microprocessors are the main dividing factors; for example, when a micropro
cessor (always one or more ARM cores) is built into the FPGA fabric, that FPGA series is
referred to as an SoC (system-on-chip) FPGA, because of the easiness with which complete
complex systems can be built in that device.

Table 4.3 shows all current Xilinx families, which are (from lowest to highest end) Spar-
tan, Artix, Kintex, and Virtex. It shows also the Zynq family devices, which are referred to

Figure 4.10
LUT construction principle (for 3 inputs, here computing y = a  b + a ′  b′  c).

Table 4.2
Intel FPGA families

FPGAs MAX (1) Cyclone Arria Stratix

V 10 V 10 V 10 V 10

Features

— — E GX SE SX LP GX GX SX GX SX E GX GX TX SX

GT (2) ST GT ST GT (2) GS MX (2)

(2) GZ (2) GT (2)

Transceivers ✘ ✘ ✘ ✓ ✘ ✓ ✘ ✓ ✓ ✘ ✓ ✘ ✘ ✓ ✓ ✓ ✓

ARM
processor

✘ ✘ ✘ ✘ ✓ ✓ ✘ ✘ ✘ ✓ ✘ ✓ ✘ ✘ ✘ (3) ✓

A/D
converter

✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Technology
(nm)

180 55 28 20 28 20 28 14

(1) With nonvolatile (Flash) configuration memory. (2) Referred to as “SoC FPGAs” (notice ARM pro

cessor). (3) Some.

112	 Chapter 4

Table 4.3
Xilinx FPGA families

FPGAs Spartan Artix Kintex Virtex Zynq (1)

Features
7 7 7

UltraSc
UltraSc+

7
UltraSc
UltraSc+

7000 UltraScale+

— S CG EG,EV RF

Transceivers ✘ ✓ ✓ ✓ ✓ ✓ (2) (2) ✘ ✘ ✓

ARM
processor

✘ ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✓ ✓

ARM GPU ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓ ✘

A/D
converter

(2) ✓ ✓ ✘ ✓ ✘ ✘ ✘ ✘ ✘ ✘

RF A/D
converter

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓

Technology
(nm)

28 28 28 20, 16 28 20, 16 28 16

(1) Referred to as “SoC FPGAs” (notice ARM processor). (2) Some.

Table 4.4
Examples of features in top FPGAs from Intel and Xilinx

Feature Stratix 10 GX (fig. 4.8) Virtex UltraScale+ (fig. 4.9)

Name of main logic block (figs. 4.8, 4.9) LAB (logic array block) CLB (configurable logic block)

Name of logic sub-block (figs. 4.8, 4.9) ALM (adaptive logic module) Slice

Number of LABs or CLBs 12.8k to 186.7k LABs 24.6k to 108k CLBs

Number of ALMs or Slices 10 ALMs per LAB 2 Slices per CLB

Number of “macrocells” 1 per ALM 8 per Slice

Number of LUTs per “macrocell” 1 (total: 128k to 1867k) 1 (total: 394k to 1728k)

Number of flip-flops per “macrocell” 4 (total: 512k to 7470k) 2 (total: 788k to 3456k)

Number of equivalent logic elements 378k to 5510k 862k to 3780k

Logic elements per “macrocell” ratio 2.95 2.19

Block memory (Mb) 30 to 229 115 to 454

Number of transceivers 24 to 96 (17 and 30 Gbps) 32 to 128 (32 and 58 Gbps)

Number of PCI Express ports 1 to 4 1 to 6

Number of user I/O pins 392 to 1640 208 to 832

Core operating voltage 0.8V to 0.94V 0.72V to 0.9V

Maximum reference clock speed (MHz) 800 800

CMOS technology 14nm 16nm

Review of Field Programmable Gate Arrays (FPGAs)	 113

as SoC FPGAs because of the presence of hard microprocessors (again, ARM cores). The last
three Xilinx generations are 7, UltraScale, and UltraScale+, which employ technology nodes
28nm, 20nm, and 16nm, respectively.

Table 4.4 shows examples of important features in two top devices of similar categories,
the first (Stratix 10 GX) being from Intel and the second (Virtex UltraScale+) from Xilinx.
(The reader is invited to check the construction of the first seven lines against figures 4.8 and
4.9.) This table is not a comparison because there are many differences that cannot be listed
in a simple table, but it is interesting to see that things are not much different from one to
the other. For example, notice that the total numbers of LUTs, flip-flops, and equivalent
logic elements overlap nicely. Observe also the similarity in the other features, like the core
operating voltage and the maximum reference clock frequency. Finally, observe the variety
and abundance of resources (and this table shows just some of them) in this kind of device.

Price of FPGAs  We close this section with comments on FPGA prices, which can go from
about a dollar up to tens of thousands of dollars. A simple, informal illustration for price
ranges is presented in figure 4.11, where some numbers, covering the interval from $1 to

Figure 4.11
An illustrative, informal representation for FPGAs’ price ranges.

Figure 4.12
Examples of low-cost FPGA development boards (with Cyclone 10 on the left and Spartan 7 on the right).

114	 Chapter 4

$50,000, are employed to help visualize the big picture. For example, current Cyclone, Spartan,
and Artix devices fall typically in the first range, while current Stratix and Virtex devices usu-
ally fall in the upper part of the second range and in the third range. It is important, however,
to emphasize that devices in the low-cost range can be very powerful; for example, the initial
Cyclone 10 GX FPGA, which contain 31k ALMs (85k equivalent logic elements), six high-speed
(12.5 Gbps) transceivers, 6 Mb of user RAM, plus many other features, can be purchased for just
over $100. As additional examples, the initial Spartan 7 FPGA, with 6k equivalent logic cells,
can be bought by under $12, and MAX 10 FPGAs can cost less than $5.

The FPGA industry also offers a large selection of development boards, with some having
special prices for academic use. Two low-cost examples (under $100) are depicted in fig-
ure 4.12, for a Cyclone 10 FPGA on the left and for a Spartan 7 FPGA on the right.

