
 5   Regular (Category 1) State Machines 

 5.1   Introduction 

 We know that, from a hardware perspective, state machines can be classifi ed into two 
types, based on their  input connections , as follows. 

 1)    Moore machines:    The input, if it exists, is connected only to the logic block that 
computes the next state. 
 2)    Mealy machines:    The input is connected to both logic blocks, that is, for the next 
state and for the actual output. 

 In Section 3.6 we introduced a new classifi cation, also from a hardware point of view, 
based on the  transition types  and  nature of the outputs , as follows (see   fi gure 5.1 ). 

 1)    Regular (category 1) state machines:    This category, illustrated in   fi gure 5.1a  and 
studied in chapters 5 to 7, consists of machines with only untimed transitions and 
outputs that do not depend on previous (past) output values. 
 2)    Timed (category 2) state machines:    This category, illustrated in   fi gure 5.1b  and 
studied in chapters 8 to 10, consists of machines with one or more transitions that 
depend on time (so they can have all four transition types: conditional, timed, 
conditional-timed, and unconditional). However, all outputs are still independent 
from previous (past) output values.  
 3)    Recursive (category 3) state machines:    This category is illustrated in   fi gure 5.1c  and 
studied in chapters 11 to 13. It can have all four types of transitions, but one or more 
outputs depend on previous (past) output values. Recall that the outputs are produced 
by the FSM ’ s  combinational  logic block, so the current output values are  “ forgotten ”  
after the machine leaves that state; consequently, to implement a recursive (recurrent) 
machine, some sort of extra memory is needed.     

 As seen in this and in upcoming chapters, the classifi cations mentioned above 
(no other classifi cation is needed) will immensely ease the design of hardware-based 



82 Chapter 5

state machines. The two fundamental decisions before starting a design are then the 
following: 

 1)   Decide the state machine category (regular, timed, or recursive). 
 2)   Next, decide the state machine type (Moore or Mealy). 

 It is important to recall, however, that regardless of the machine category and type, 
the state transition diagram must fulfi ll three fundamental requisites (seen in section 
1.3): 

 1)   It must include all possible system states. 
 2)   All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary. 
 3)   The list of outputs must be exactly the same in all states (standard architecture). 

 5.2   Architectures for Regular (Category 1) Machines 

 The architectures for category 1 machines are summarized in   fi gure 5.2 . These repre-
sentations follow the style of fi gures 3.1b,d, but the style of fi gures 3.1a,c could be 
used equivalently. The output register (  fi gure 5.2c ) is optional. The four possible con-
structions, listed in   fi gure 5.2d , are summarized below.    

  Regular Moore machine  (  fi gure 5.2a ):   In this case, the input (if it exists) is connected 
only to the logic block for the next state. Consequently, the output depends only on 
the state in which the machine is (in other words, for each state, the output value in 
unique), resulting a synchronous behavior (see details in section 3.5). Because modern 
designs are generally synchronous, this implementation is preferred whenever the 
application permits. 

 Figure 5.1 
 State machine categories (from a hardware perspective). 
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  Regular Mealy machine  (  fi gure 5.2b ):   In this case, the input is connected to both 
logic blocks, so it can affect the output directly, resulting an asynchronous behavior. 
Therefore, the machine can have more than one output value for the same state 
(section 3.5). 
  Out-registered (pipelined) Moore machine:    This consists of connecting the register of 
  fi gure 5.2c  to the output of the Moore machine of   fi gure 5.2a . As seen in sections 2.5 
and 2.6, two fundamental reasons for doing so are glitch removal and pipelined con-
struction. As a result, the fi nal circuit ’ s output will be delayed with respect to the 
original machine ’ s output by either one clock period (if the same clock edge is 
employed in the state register and in the output register) or by one-half of a clock 
period (if different clock edges are used). Note that the resulting circuit is order-2 
synchronous because the original Moore machine was already a registered circuit (in 
other words, the input – output transfer occurs after two clock edges — see details in 
section 3.5). If in a given application this extra register is needed but its consequent 
extra delay is not acceptable, the next alternative can be used. 
  Out-registered (pipelined) Mealy machine:    This consists of connecting the register of 
  fi gure 5.2c  to the output of the Mealy machine of   fi gure 5.2b . The reasons for 
doing so are the same as for Moore machines. The resulting circuit is order-1 synchro-
nous because the original Mealy machine is asynchronous. Consequently, the overall 

 Figure 5.2 
 Regular (category 1) state machine architectures for (a) Moore and (b) Mealy types. (c) Optional 

output register. (d) Resulting circuits. 
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behavior (with the output register included) is similar to that of a pure Moore machine 
(without the output register — see details in section 3.5). 

 5.3   Number of Flip-Flops 

 In general, and particularly in large designs, it is diffi cult to estimate the number of 
logic gates that will be needed to implement the desired solution. However, it is always 
possible to determine, and  exactly , the number of fl ip-fl ops. 

 In the case of sequential circuits implemented as category 1 state machines, there 
are two demands for DFFs, as follows (see state-encoding options in section 3.7). 

 1)   For the state register (see  nx_state  and  pr_state  in   fi gure 5.2a , which are the state 
memory fl ip-fl ops ’  input and output, respectively; below,  M FSM   is the number of states): 

 For sequential or Gray encoding:  N FSM   =   log 2  M FSM    . Example:  M FSM   = 25  →   N FSM   = 5. 
 For Johnson encoding:  N FSM   =    M FSM  /2  . Example:  M FSM   = 25  →   N FSM   = 13. 
 For one-hot encoding:  N FSM   =  M FSM  . Example:  M FSM   = 25  →   N FSM   = 25. 

 2)   For the output register (  fi gure 5.2c , optional, with  b output   bits): 
  N output   =  b output  . Example:  b output   = 16  →   N output   = 16. 

 Hence, the total is  N total   =  N FSM   +  N output  . In the examples that follow, as well as in the 
actual designs with VHDL and SystemVerilog, the number of fl ip-fl ops will be often 
examined. 

 5.4   Examples of Regular (Category 1) Machines 

 A series of regular FSMs are presented next. Several of these examples are designed 
later using VHDL (chapter 6) and SystemVerilog (chapter 7). 

 5.4.1   Small Counters 
 Counters are well-known circuits easily designed without the FSM approach using 
VHDL or SystemVerilog. Moreover, a counter might have thousands of states, render-
ing it impractical for representation as a regular state machine. Nevertheless, for 
designing counters without the help of any EDA tool (as done in sections 3.3 and 3.4), 
the FSM model can be very helpful, particularly if the counter is not too big and has 
several control inputs such as enable and up-down. Moreover, the implementation of 
such counters can be very illustrative of the FSM approach. For these reasons, an 
example is included in this section. 

 A 1-to-5 counter with enable and up-down controls is presented in   fi gure 5.3  (just 
to practice, equivalent detailed and simplifi ed representations are shown — recall fi gure 
1.4). The circuit counts if  ena  =  ‘ 1 ’ , or stops (and holds its last output value) otherwise. 
If  up  =  ‘ 1 ’ , the circuit counts from 1 to 5, restarting then automatically from 1; oth-
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erwise, it counts from 5 down to 1, restarting then automatically from 5. Because 
counters are inherently synchronous, the Moore model is the natural choice for 
their implementations.    

 Because this machine has  M FSM   = 5 states, and the optional output register is gener-
ally not needed in counters, the number of fl ip-fl ops required to implement it (see 
section 5.3) is  N FSM   = 3 if sequential, Gray, or Johnson encoding is used, or 5 for one-hot 
encoding. 

 VHDL and SystemVerilog implementations for this counter are presented in sec-
tions 6.6 and 7.5, respectively. 

 5.4.2   Parity Detector 
 This example concerns a circuit that detects the parity of a serial data stream. As 
depicted in   fi gure 5.4a ,  x  is the serial data input, and  y  is the circuit ’ s response. The 
output must be  y  =  ‘ 1 ’  when the number of  ‘ 1 ’ s in  x  is odd. 

 A basic solution for the case when a reset pulse is applied before every calculation 
starts is presented in   fi gure 5.4b . In this case the parity value is the value of  y  after 
the last bit has been presented to the circuit (before a new reset pulse is applied). Note 

 Figure 5.3 
 Detailed (a) and simplifi ed (b) representations for a 1-to-5 counter with enable and up-down 

controls. 

 Figure 5.4 
 Parity detector. (a) Circuit ports. (b) State transition diagram. (c) Hardware block diagram. 
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the arrangement in   fi gure 5.4c , based on the material seen in section 3.11; when the 
reset pulse goes up (which subsequently resets the FSM), it causes the value of  y  to be 
stored in the auxiliary register, producing  y_reg , which stays stable (constant) until a 
new calculation is completed (i.e., a new reset pulse occurs).    

 A slightly different parity detection problem is depicted in   fi gure 5.5 , which has 
to be reset only at power-up (thus a more usual situation). A data-valid ( dv ) bit indi-
cates the extension of the data vector whose parity must be calculated (when  dv  goes 
up, a new vector begins, fi nishing when  dv  returns to zero). It is assumed that after a 
calculation (data stream) is completed, the machine must keep displaying the fi nal 
parity value until a new vector is presented, as depicted in the illustrative timing 
diagram of   fi gure 5.5b , which shows two vectors of size 5 bits each, with fi nal parity 
 y  =  ‘ 1 ’  for vector 1 and  y  =  ‘ 0 ’  for vector 2. 

 A Moore machine that complies with these specifi cations is presented in   fi gure 5.5c  
(note that in this example  dv  and  x  are updated at the negative clock edge). Because 
of  dv , this machine does not need to be reset before a new calculation starts. Indeed, 
depending on the encoding scheme (sequential or Gray, for example), this circuit 
might not need a reset signal at all because deadlock cannot occur (the unused code-
word will converge back to one of the machines ’  states) and  dv  will cause the compu-
tations to be correct even if the initial state is arbitrary (see exercise 3.11).    

 5.4.3   Basic One-Shot Circuit 
 One-shot circuits are circuits that, when triggered, generate a single voltage or current 
pulse, possibly with a fi xed time duration. This section discusses the particular case 
in which the time duration of the output is exactly one clock period. In this example 
it will be considered that the input lasts at least one clock period; generic cases are 
studied in sections 8.11.8 to 8.11.10, which deal specifi cally with triggered circuits. 

 Figure 5.5 
 Another parity detector. (a) Circuit ports. (b) Illustrative time behavior. (c) State transition 

diagram. 
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 In fact, a one-shot circuit (not employing the FSM approach) was already seen in 
chapter 2 (fi gure 2.10), with its schematic repeated in   fi gure 5.6a . This option, however, 
is fi ne only if the triggering input ( x ) is synchronous; otherwise, the output pulse could 
last less than  T clk  . For it to work with asynchronous inputs, another DFF is needed, as 
shown in   fi gure 5.6b . A version with a full synchronizer (section 2.3) is shown in   fi gure 
5.6c .    

 The general operating principle is illustrated in   fi gure 5.7 . The circuit ports are 
shown in   fi gure 5.7a , where  x  is the triggering input and  y  is the one-shot output. An 
illustrative timing diagram is presented in   fi gure 5.7b , with  x  having an arbitrary dura-
tion and  y  lasting exactly one clock period. Pulse 1 lasts less than  T clk   but happened 
to fall under a positive clock edge, so it was detected. This is obviously not guaranteed 
to happen, as illustrated for pulse 2. Only if the duration is  T clk   or longer, as for pulse 
3, is the triggering of  y  guaranteed. Note that  x  and  y  are uncorrelated (mutually 
asynchronous) if  x  and  clk  are uncorrelated.    

 A solution using a regular (category 1) Moore machine is presented in   fi gure 5.7c . 
Note that it stays in state B during only one clock period; because  y  =  ‘ 1 ’  occurs only 
in that state, the desired pulse results. An inferior solution is presented in   fi gure 5.7d  
(see exercise 5.5). 

 Figure 5.6 
 Trivial one-shot circuits. (a) Basic version, for synchronous input only. (b) Preceded by a 

synchronizing DFF, so the input can be asynchronous. (c) With a two-stage synchronizer. 

 Figure 5.7 
 One-shot state machine. (a) Circuit ports. (b) Example of expected behavior. (c) State transition 

diagram. (d) An inferior solution (exercise 5.5). 
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 As a fi nal comment, let us consider the circuit of   fi gure 5.6b , which is a kind of 
optimized synchronous version of the one-shot circuit. Because the solution in   fi gure 
5.7c  is also synchronous (all Moore machines are), would you expect the circuit that 
implements this state machine to be equal or at least similar to that of   fi gure 5.6b ? 
(See exercise 5.5.) 

 5.4.4   Temperature Controller 
   Figure 5.8a  shows a circuit diagram for a temperature controller of an air conditioning 
system. In the upper branch, the room temperature is sensed by some type of tem-
perature sensor and converted to digital format by the ADC (analog-to-digital con-
verter), producing the signal  T room  . In the lower branch, the user, by means of two 
pushbuttons ( up ,  dn ), selects the reference (desired) temperature, producing the signal 
 T ref  . Depending on the values of these two signals, the controller core decides whether 
to heat the room ( h  =  ‘ 1 ’ ), to cool it ( c  =  ‘ 1 ’ ), or to stay in the idle state.    

 Because mechanical switches are subject to bounces before they fi nally settle in 
the proper position, the pushbuttons must be debounced. However, debouncers are 
timed circuits, thus requiring a timed (category 2) machine to be implemented. Such 
machines are seen in chapter 8, so for now let us just consider that the proper value 
is produced for  T ref   (the design of this block is treated in section 8.11.4). For example, 
 T ref   could be selected in the 60 ° F to 90 ° F range with an initial value (on power-up, 
defi ned by the reset signal) of 73 ° F, if degrees Fahrenheit are used, or in the 15 ° C to 
30 ° C range with a default value of 23 ° C, if degrees centigrade are employed instead. 

 An important addition to the system is depicted in   fi gure 5.8b , which consists of 
a display accessed by means of a multiplexer. The display shows the room temperature 
while the selection pushbutton ( sel , with no need for debouncing, not shown in the 
fi gure) is at rest ( sel  =  ‘ 0 ’ ) or the reference temperature while it is pressed ( sel  =  ‘ 1 ’ ). 

 A state machine for the controller core, using the Moore approach, is depicted in 
  fi gure 5.8c .   Δ T  represents the system hysteresis, which is generally a fi xed circuit 

 Figure 5.8 
 Temperature controller. (a) Overall circuit diagram. (b) Display driver. (c) State machine for the 

controller core block. 
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parameter. For example, if   Δ T  = 1 ° F, the room temperature will be kept within  T ref    ±  
1 ° F. By comparing  T room   to  T ref   and taking into account the hysteresis, the machine will 
be able to produce the proper values for  h  and  c . 

 Finally, note that the inputs from the pushbuttons are asynchronous with respect 
to the system clock, which could, in principle, cause metastability (see section 2.3). 
This, however, is prevented here by the debouncer (section 8.11.3). 

 5.4.5   Garage Door Controller 
 This example presents a garage door controller that operates as follows. If the door is 
completely closed or completely open and the remote is activated, the motor is turned 
on in the direction to open or close it, respectively. If the door is opening or closing 
and the remote is activated, the door stops. If the remote is activated again, the motor 
is turned on to move the door in the opposite direction. 

 The circuit ports are depicted in   fi gure 5.9a , where  remt  (command from the remote 
control),  sen1  (door-open sensor), and  sen2  (door-closed sensor) are the inputs (plus 
the conventional  clk  and  rst  signals), and  ctr  (control) is the output. Note that  ctr  has 
two bits;  ctr (1) turns the motor on ( ‘ 1 ’ ) or off ( ‘ 0 ’ ), whereas  ctr (0) defi nes its direction, 
opening ( ‘ 0 ’ ) or closing ( ‘ 1 ’ ) the door (thus the value of the latter does not matter 
when the former is  ‘ 0 ’ ).    

 A preliminary state diagram is shown in   fi gure 5.9b . The transition control signals 
are  remt ,  sen1 , and  sen2 . Note that this machine complies with all three requisites of 

 Figure 5.9 
 Garage door controller. (a) Circuit ports. (b) Bad solution (with state-bypass). (c) Good 

solution. 



90 Chapter 5

section 1.3. However, it exhibits a major problem, which is state bypass (see section 
4.2.4). For example, if the door is closed and a long (lasting several clock cycles)  remt  
=  ‘ 1 ’  command is received, the machine goes around the entire loop. Of course, if a 
one-shot circuit (section 5.4.3) is used to reduce the duration of  remt  to a single clock 
period, then this machine is fi ne. 

 A corrected diagram is presented in   fi gure 5.9c , containing additional states that 
wait for  remt  to return to zero before proceeding, thus eliminating the state-bypass 
problem. This is a Moore machine because there is no reason to employ an asynchro-
nous solution in this kind of application. Glitches at the output are not a problem 
here, so the optional output register is not needed. 

 A good practice in this kind of application is to include debouncers for the signals 
coming from the remote control and from the sensors, which not only eliminate the 
need for synchronizers but also prevent short input glitches (due to lightning or the 
switching of large electric currents, for example) from activating the machine (in this 
case, it has to be a full debouncer, like that in section 8.11.3, for example). 

 Because the machine of   fi gure 5.9c  has  M FSM   = 8 states, the required number of DFFs 
is  N FSM   = 3 if sequential or Gray encoding is used, 4 for Johnson, or 8 for one-hot. 

 VHDL and SystemVerilog implementations for this garage door controller are pre-
sented in sections 6.7 and 7.6, respectively. 

 5.4.6   Vending Machine Controller 
 This example deals with a controller for a vending machine. It is assumed that it sells 
candy bars for the single price of $0.40, accepting nickel, dime, and quarter coins. 

 The circuit ports are depicted in   fi gure 5.10a . The inputs  nickel_in ,  dime_in , and 
 quarter_in  are generated by the coin collector, informing the type of coin that was 
deposited by the customer. The inputs  nickel_out  and  dime_out  are generated by the 
coin dispenser mechanism, informing the type of coin that was returned to the cus-
tomer. The last nonoperational input is  candy_out , produced by the candy dispenser 
mechanism, informing that a candy was delivered to the customer. The outputs 
 disp_nickel  and  disp_dime  tell the coin dispenser mechanism that a nickel or a dime 
must be returned to the customer, while the output  disp_candy  tells the candy bar 
dispenser mechanism that a candy bar must be delivered to the customer.    

 A corresponding Moore machine is presented in   fi gure 5.10b . To simplify the nota-
tion, numbers were used instead of names (see other examples of equivalent state 
diagram representations in section 1.4). The state names correspond to the accumu-
lated amount ( credit ). The transition conditions refer to the last coin entered, with 
negative values indicating change returned to the customer. In the coin-return opera-
tions it was opted to deliver the largest coins possible. After the machine reaches the 
state 40 (thick circle), the only way to return to the initial state is by receiving a 
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 candy_out  =  ‘ 1 ’  command from the candy-delivering mechanism confi rming that a 
candy bar was dispensed or a reset pulse. 

 Note that the machine of   fi gure 5.10b  is subject to state bypass (section 4.2.4) if 
the inputs last longer than one clock period (which is generally the case in this kind 
of application), so wait states (or a fl ag or one-shot conversion) must be added (exercise 
5.11). 

 Because glitches are defi nitely not acceptable in this application, the optional 
output register should be used here. In regard to the inputs, we can assume that 
they are produced by other circuits that process the actual inputs and hence 
operate with the same clock as our state machine, dispensing with the use of debounc-
ers and/or synchronizers (although they might be needed at the inputs of preceding 
circuits). 

 If we assume that all control inputs to this machine last exactly one clock period 
(due to one-shot circuits, for example), so state bypass cannot occur and additional 
states are not needed, the number of DFFs required to build it (with  M FSM   = 13 states) 
is  N FSM   = 4 if sequential or Gray encoding is used, 7 for Johnson, or 13 for one-hot, 
plus  N output   = 3 for the output register. 

 5.4.7   Datapath Control for an Accumulator 
 Before we examine this example, a review of section 3.13 is suggested. 

 In this example we assume that the datapath of fi gure 3.22a must operate as an 
add-and-accumulate circuit (ACC), accumulating in register A four consecutive values 

 Figure 5.10 
 Controller for a vending machine that sells candy bars for $0.40, accepting nickels, dimes, and 

quarters. (a) Circuit ports. (b) Corresponding Moore machine (state-bypass prevention not 

included). 
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of  inpB . The data-valid bit ( dv ), when asserted (during just one clock period), will again 
be responsible for starting the computations, after which the resulting value must 
remain displayed at  ALUout  until another pulse occurs in  dv . In summary, the opera-
tions are: 0 + B  →  A, A + B  →  A, A + B  →  A, and A + B  →  A. 

 Recall that in a datapath-based design the FSM is not responsible for implementing 
the whole computation but just the  control unit  (shown on the left in fi gure 3.22a), 
which controls the datapath. In other words, the FSM must produce the signals  selA  
(selects the data source for register A),  wrA  and  wrB  (enable writing into registers A 
and B), and  ALUop  (produces the ALU opcode, defi ning its operations, according to 
the table in fi gure 3.22b). 

 An illustrative timing diagram (similar to what was done in fi gure 3.22c) for an 
FSM that controls this datapath such that the desired accumulator results is presented 
in   fi gure 5.11a . Note that the computations take fi ve steps (called  start ,  acc1 ,  acc2 , 
 acc3 , and  acc4 ), after which the control unit (FSM) returns to the  idle  state (so the 
machine has six states). The corresponding state transition diagram, which is a direct 
translation of the timing diagram (compare the values in the timing diagram against 
those in the state transition diagram), is exhibited in   fi gure 5.11b . Observe that this 
control unit is indeed a category 1 machine.    

 Because this machine has  M FSM   = 6 states, and the optional output register is gener-
ally not needed in control units, the number of fl ip-fl ops required to implement it 
(see section 5.3) is  N FSM   = 3 if sequential, Gray, or Johnson encoding is used or 6 for 
one-hot. 

 Figure 5.11 
 (a) Illustrative timing diagram for the datapath of fi gure 3.22a operating as an accumulator. (b) 

Corresponding Moore machine. 
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 5.4.8   Datapath Control for a Greatest Common Divisor Calculator 
 Before we examine this example, a review of section 3.13 is suggested. Particular 
attention should be paid to comment number 4 at the end of that section, which is 
helpful here. 

 This section shows another example of a datapath-based circuit. The datapath must 
compute the GCD (greatest common divisor) between two integers. The corresponding 
algorithm is shown in   fi gure 5.12 ; the largest value is substituted with the difference 
between it and the other value until the values become equal, which is then declared 
to be the GCD. A corresponding fl owchart is also included in   fi gure 5.12 . As in the 
previous example, a  dv  bit, when asserted (during one clock period), must start the 
computations.    

 The datapath to be used in this example is depicted in   fi gure 5.13a . The ALU ’ s 
opcode table is shown in   fi gure 5.13b . The ALU has also an auxiliary output ( sign ) that 
indicates whether its output ( ALUout ) is zero ( “ 00 ” ), positive ( “ 01 ” ), or negative ( “ 10 ” ), 
as listed in   fi gure 5.13c .    

 As shown, the datapath ’ s control signals are  selA  and  selB  (select the data sources 
for registers A and B),  wrA  and  wrB  (enable writing into registers A and B), and  ALUop  
(produces the ALU opcode, defi ning its operations, according to the table in   fi gure 
5.13b ). The control unit (FSM) is responsible for generating all control signals. 

 An illustrative timing diagram for an FSM that controls this datapath such that the 
desired computations occur is presented in   fi gure 5.13d . Dashed lines indicate  “ don ’ t 
care ”  values. Because  inpA  = 9 and  inpB  = 15 were adopted, the following computations 
are expected: Iteration 1, 9  →  A, 15  →  B; Iteration 2, B  >  A, then 15  −  9 = 6  →  B; Itera-
tion 3, A  >  B, then 9  −  6 = 3  →  A; Iteration 4, B  >  A, so 6  −  3 = 3  →  B. Because A = B, 
GCD = A = 3. 

 Observe in   fi gure 5.13d  that the time slots are identifi ed as  idle  (waiting for a  dv  
bit),  load  ( inpA  and  inpB  are stored in A and B),  writeA  ( ALUout  is stored in A), and 

 Figure 5.12 
 GCD algorithm and fl owchart. 
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 Figure 5.13 
 (a) Datapath and control unit for a GCD calculator. (b) ALU ’ s opcode table. (c) ALU ’ s sign table. 

(d) Illustrative timing diagram, for  inpA  = 9 and  inpB  = 15. (e) Corresponding state machine. 
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 writeB  ( ALUout  is stored in B). Observe also the presence of a  wait  time slot after every 
data storage, which is needed for the data to be effectively ready for comparison before 
an actual comparison occurs (recall comment 4 of section 3.13). 

 A corresponding state transition diagram is presented in   fi gure 5.13e , which is a 
direct translation of the timing diagram (compare the values in the plots against those 
in the state transition diagram). Note that after each write-enabling state ( load ,  writeA , 
and  writeB ) the machine goes unconditionally to the  wait  state. In the  idle  state,  wrA  = 
 wrB  =  ‘ 0 ’ , so nothing can be written into the registers, and because  ALUop  = 0, the output 
is  ALUout  = A, so the computed GCD value is kept unchanged until  dv  is asserted again. 

 VHDL and SystemVerilog implementations for this control unit are presented in 
sections 6.8 and 7.7, respectively. 

 5.4.9   Generic Sequence Detector 
 This is another interesting example from a conceptual point of view. Say that we want 
to design a signature detector that searches for the string  “  abc  ”  in a sequential data 
stream, examining one character at a time (a character here represents a bit vector 
with any number of bits). So this is exactly the same problem presented in the very 
fi rst state transition diagram of the book (fi gure 1.3, repeated in   fi gure 5.14a) . In this 
example it was assumed that  a   ≠   b   ≠   c , so this machine works well. But let us consider 
now a completely generic situation, in which  a ,  b , and  c  are  programmable , so we can 
no longer assume that they are all different. Will this machine still work?    

 Figure 5.14 
 Generic string detection. (a) Nongeneric case (requires  a   ≠   b   ≠   c ). (b) Completely generic imple-

mentation due to the inclusion of priorities in the transition conditions. (c) Example for the case 

of  a  =  b  =  c . 
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 To answer this question, let us assume that  a  =  b , so  b  can be replaced with  a  in 
  fi gure 5.14a . Consequently, state B (for example) has the following transition condi-
tions:  a  in the BB transition;  a  also in the BC transition; and  ≠  a   &   ≠  b  =  ≠  a  in the BA 
transition. This shows that state B is now  overspecifi ed  because both BB and BC transi-
tions are governed by the same condition ( a ). Therefore, this machine is not fi ne for 
generic values of  a ,  b , and  c . 

 The new question then is  “ How do we fi x overspecifi cations? ”  We do it in the way 
explained in section 1.5, that is, with the establishment of  priorities . This is done in 
  fi gure 5.14b . For state B, the BC transition must have priority over the BB transition, 
so the transition condition in the former remains just  b , while that in the latter 
becomes  a   &   ≠  b . Likewise, for state C, the CD transition must have priority over the 
CB transition; thus, the transition condition in the former remains  c , whereas that in 
the latter becomes  a   &   ≠  c . 

 As an example,   fi gure 5.14c  shows the extreme case in which  a  =  b  =  c . Then  ≠  a   &  
 ≠  b  =  ≠  a ,  ≠  a   &   ≠  c  =  ≠  a ,  a   &   ≠  b  = null (so the BB transition disappears), and  a   &   ≠  c  = 
null (the CB transition also disappears). 

 The only restriction of this generic string detector is that it detects only nonover-
lapping strings. 

 5.4.10   Transparent Circuits 
 We close this chapter with the description of a special (although uncommon) type of 
circuit for FSMs, which consists of sequential circuits that are required to be  “ transpar-
ent ”  (i.e., the output must  “ see ”  the input; in other words, if the input changes, so 
should the output). If implemented using an FSM, the circuit must provide outputs 
that are capable of changing when the input changes, even if the machine remains 
in the same state. 

 As an example, consider the case in   fi gure 5.15a , with inputs  a  and  b  and output 
 y . The output must be  y  =  a  during one clock period,  y  =  a  ⋅  b  during the next period, 
and fi nally  y = b  during the third clock cycle, with this sequence repeated indefi nitely. 
Corresponding Moore and Mealy diagrams are included in   fi gures 5.15b,c . Note that 
because the machine must go to the next state at every clock cycle, its transitions are 
unconditional.    

 Because in this case the output depends solely on the machine ’ s state, a Moore 
machine seems to be the natural choice. However, because the output must change 
when the input changes, a Mealy machine, being asynchronous, would be recom-
mended. In fact, both are fi ne. 

 In the Moore case the transparency problem is circumvented by associating the 
machine with switches such as the multiplexer in   fi gure 5.15d , in which case the 
machine plays just the role of mux selector (in this example, the resulting machine 
is clearly just a 0-to-2 counter), so even though the machine is not transparent, the 
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overall circuit is (this is typically what a VHDL/SystemVerilog compiler would do). In 
the Mealy case the implementation is straightforward, but the output will be one clock 
cycle ahead of the desired sequence (compare   fi gures 5.15b and 5.15c ). 

 5.4.11   LCD, I 2 C, and SPI Interfaces 
 Three special additional design examples are presented in chapter 14, consisting of 
circuits for interfacing with alphanumeric LCD displays and for implementing I 2 C or 
SPI serial interfaces. Depending on the application, any of the three FSM categories 
might be needed in these circuits; for instance, in the LCD driver example of section 
14.1, a category 1 FSM is employed, whereas in the I 2 C and SPI serial interfaces of 
sections 14.2 and 14.3, categories 2 and 3 are used. 

 5.5   Exercises 

 Exercise 5.1: Machine Category and Number of Flip-Flops 
 a)   Why are the state machines in   fi gures 5.3, 5.9c, and 5.13e  (among others) said to 
be of category 1? 
 b)   How many DFFs are needed to implement each of these FSMs using ( i ) sequential 
encoding, ( ii ) Gray encoding, or ( iii ) one-hot encoding? 

 Exercise 5.2: Metastability and Synchronizer 
 a)   Solve exercise 2.2 if not done yet. 
 b)   Consider now the garage door controller of   fi gure 5.9 . ( i ) Which inputs are asyn-
chronous? ( ii ) If no debouncing circuits (which are synchronous) are adopted for the 
asynchronous inputs, are synchronizers indispensable in this application? 

 Exercise 5.3: Need for Reset 
 a)   Solve exercise 3.10 if not done yet. 
 b)   Solve exercise 3.11 if not done yet. 

 Figure 5.15  
 A  “ transparent ”  circuit. (a) Circuit ports. (b) Moore and (c) Mealy state transition diagrams. 

(d) Typical implementation based on the Moore model. 
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 Exercise 5.4: Truly Complementary Transition Conditions 
 In section 1.5 the importance of having the state transition diagram neither under- nor 
overspecifi ed was discussed. What happens if, in the garage door controller of   fi gure 
5.9c,  the condition  sen1  =  ‘ 0 ’  is removed from the  opening1 - opening2  transition, or the 
condition  sen2  =  ‘ 0 ’  is removed from the  closing1 - closing2  transition? 

 Exercise 5.5: One-Shot Circuits Analysis 
 a)   It is said in section 5.4.3 that the solution in   fi gure 5.7d  is inferior to that in   fi gure 
5.7c . Why? (Suggestion: fi ll in the last two plots of   fi gure 5.16  and you will see the 
answer.) 
 b)   Is reset indispensable in these two solutions? 
 c)   In order to answer the question posed at the end of section 5.4.3, solve exercise 3.3 
if not done yet.    

 Exercise 5.6: Two-Signal-Triggered One-Shot Circuit 
   Figure 5.17  shows an illustrative timing diagram for a one-shot circuit that is not trig-
gered by a single signal but rather by a pair of signals. The triggering condition is the 
following: the one-shot pulse (in  y ) must be generated if the control signal  x  lasts at 
least as long as the  dv  pulse (this is obviously checked only at positive clock transi-
tions). Note in the fi gure that only the fi rst pulse of  x  fulfi lls this requirement, so the 
one-clock-period pulse in  y  has to be produced only in that case. Draw the state transi-
tion diagram for a state machine capable of implementing this circuit.    

 Exercise 5.7: Arbiter 
 Arbiters are used to manage access to shared resources. An example is depicted 
in   fi gure 5.18 , which shows three peripherals (P1 to P3) that use a common bus 

 Figure 5.16 

 Figure 5.17 
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to access common resources. Obviously, only one of them can use the bus at a 
time; for example, if P1 wants to use the bus, it issues a request ( r  1  =  ‘ 1 ’ ) to the 
arbiter, which grants ( g  1  =  ‘ 1 ’ ) access only if the bus is idle at that moment. If 
multiple requests are received by the arbiter, access is granted based on preestablished 
priorities. Assuming that the priorities are P1  >  P2  >  P3, draw a state transition 
diagram for a machine capable of implementing this arbiter. The machine ’ s input 
and output are the vectors  r  =  r  1  r  2  r  3  and  g  =  g  1  g  2  g  3 , respectively (besides clock and 
reset, of course).    

 Exercise 5.8: Manchester Encoder 
 An IEEE Manchester encoder produces a low-to-high transition when the input is  ‘ 1 ’  
or a high-to-low transition when it is  ‘ 0 ’ , as illustrated in   fi gure 5.19  for the sequence 
 “ 01001 ” . Note that each input value lasts two clock periods. Observe also the presence 
of a  dv  bit, which defi nes the extent of the vector to be encoded (dashed lines in  y  
indicate  “ don ’ t care ”  values). To be more realistic,  dv  is produced at the same time 
that the fi rst valid bit is presented; additionally, a small propagation delay is included 
between clock transitions and corresponding responses. Assume that the machine too 
must operate at the positive clock edge. 

 a)   Draw a state transition diagram for a Moore machine capable of implementing this 
encoder. 
 b)   Redraw the illustrative timing diagram of   fi gure 5.19  for your Moore machine, 
including in it a plot for  pr_state . Does the Moore circuit behave exactly as in   fi gure 
5.19,  or is  y  one clock cycle delayed? 
 c)   Redo the design, this time employing a Mealy machine. 

 Figure 5.18 

 Figure 5.19 



100 Chapter 5

 d)   Repeat part b now for your Mealy solution. 
 e)   Say that we want the output to be completely clean. Are any of the solutions above 
guaranteed to be glitch-free? If not, how can glitches be removed? What happens then 
with the time response?    

 Exercise 5.9: Differential Manchester Encoder 
   Figure 5.20  illustrates the operation of a differential Manchester encoder for the 
sequence  “ 01001 ” . Note that the shape of the output pulse remains unchanged when 
the input is  ‘ 0 ’  but gets inverted when it is  ‘ 1 ’ . For example, if the last pulse was a 
 ‘ 1 ’ -to- ‘ 0 ’  pulse, the next pulse must be  ‘ 1 ’ -to- ‘ 0 ’  if the input is  ‘ 0 ’  or  ‘ 0 ’ -to- ‘ 1 ’  if it is 
 ‘ 1 ’ . Observe the presence of a  dv  bit, which defi nes the extent of the vector to be 
encoded (dashed lines in  y  indicate  “ don ’ t care ”  values). To be more realistic,  dv  is 
produced at the same time that the fi rst valid bit is presented; additionally, a small 
propagation delay has been included between the clock transitions and the corre-
sponding responses. Assume that the machine too must operate at the positive clock 
edge. 

 a)   Draw a state transition diagram for a Moore machine capable of implementing this 
encoder. 
 b)   Redraw the illustrative timing diagram of   fi gure 5.20  for your solution, including 
in it a plot for  pr_state . Does the Moore circuit behave exactly as in   fi gure 5.20,  or is 
 y  one clock cycle delayed?    

 Exercise 5.10: Time-Ordered  “ 111 ”  Detector 
 Draw the state transition diagram for an FSM that detects the sequence  abc  =  “ 111 ”  
under the constraint that it must be time ordered; that is,  a  =  ‘ 1 ’  must occur (and 
hold), then  b  =  ‘ 1 ’  must also occur (and hold), and fi nally,  c  =  ‘ 1 ’  must happen. The 
circuit ports are shown in   fi gure 5.21a . The circuit operation is illustrated in   fi gure 
5.21b , where  x  =  ‘ 1 ’  occurs when  abc  =  “ 111 ” , but in a time-ordered fashion.    

 Exercise 5.11: Vending Machine 
 It was seen that the vending machine controller of   fi gure 5.10b  must be improved 
to avoid state bypass. Present a solution for this problem. Is it better to include wait 

 Figure 5.20 
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states or a fl ag or to convert the inputs into one-shot signals with one-clock-period 
duration? 

 Exercise 5.12: Time Behavior of a String Detector 
 Consider the Moore-type state machine of   fi gure 5.14a , which detects the sequence 
 “  abc  ”  for the case of  a   ≠   b   ≠   c , where  x  and  y  represent the input and output, 
respectively. 

 a)   Complete the timing diagram of   fi gure 5.22  for the given values of  x . Note that a 
little propagation delay was included between the clock transitions and the respective 
changes in the present state; do the same for  y . 
 b)   Does the output go up immediately when the sequence  “  abc  ”  occurs or only at the 
next (positive) clock edge? Is this result as you expected? (Recall that Moore machines 
are fully synchronous.)    

 Exercise 5.13: Generic Overlapping String Detector 
 We saw in section 5.4.9 a generic approach for the implementation of nonoverlapping 
string detectors. In that case, if the sequence to be detected were  “  aba  ” , for example, 
the response to the serial bit stream  “  abababab  …  ”  would be  “ 00100010001 …  ” , whereas 
here, because overlaps must be allowed, it should be  “ 0010101 …  ” . Can you fi nd a 
generic solution (with or without a state machine) for this case? 

 Exercise 5.14: Keypad Encoder 
   Figure 5.23a  shows a 12-key keypad for which we need to design an encoder (and 
possibly also a debouncer — debouncers are discussed in chapter 8). The actual push-
button connections can be seen in   fi gure 5.23b , where  r (3:0) and  c (2:0) represent the 
keypad ’ s rows and columns, respectively. Note that because of the pull-up resistors, 

 Figure 5.21 

 Figure 5.22 
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the rows ’  voltages are all high when no switch is pressed. The keypad encoder must 
connect the bottom of one column at a time to ground ( ‘ 0 ’ ), then read the resulting 
row values, converting them into the respective codeword, as listed in   fi gure 5.23c  
(n stands for  “ none ” ); for example, if  c  =  “ 011 ” , which means that the leftmost column 
is being inspected, and the reading is  r  =  “ 1011 ” , then we know that pushbutton 4 is 
pressed. Present a solution for this encoder. (A possible solution for the debouncer is 
treated in exercise 8.11.)    

 Exercise 5.15: Datapath Controller for a Largest-Value Detector 
 Say that you are given the datapath of   fi gure 5.13a , with  inpB  monitoring a serial data 
stream, of which the largest value must be determined (placed at the ALU output, 
 ALUout ). The monitoring should start when a  dv  bit is asserted, ending when  dv  returns 
to zero. 

 a)   Develop a state transition diagram (as in   fi gure 5.13e ) for an FSM capable of imple-
menting the corresponding control unit. Include in it  “ nop ”  (no operation) states if 
necessary to have the number of clock cycles be the same in all iterations. 
 b)   Present an illustrative timing diagram for your machine (as in   fi gure 5.13d ), assum-
ing that the values presented to the circuit (while  dv  =  ‘ 1 ’ ) are 5  →  8  →  4  →  0. (If you 
prefer, do part b before part a.) 

 Exercise 5.16: Datapath Controller for a Square Root Calculator 
 To calculate  z  = ( x  2  +  y  2 ) 1/2 , where  x ,  y , and  z  are unsigned integers, the expression  z  = 
max( a   −   a /8 +  b /2,  a ) can be used, where  a  = max( x ,  y ) and  b  = min( x ,  y ). Recall that 
to divide an integer by 8 or by 2 all that is needed is to shift it to the right three posi-
tions or one position, respectively. Make the adjustments that you fi nd necessary in 
the datapath of   fi gure 5.13a  (for example, include a shift-right option in one of the 
existing registers or in a new register at the ALU output), then devise a state machine 
that computes the square root above using that datapath. 

 Figure 5.23 
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 Exercise 5.17: Flag Monitor 
 Develop an FSM for a circuit that monitors a fl ag such that, if the fl ag remains constant 
within a given time window, the output copies the measured (constant) fl ag value. 
This is illustrated in   fi gure 5.24 ; if  fl ag_in  has no transitions at all while  window  is high, 
then  fl ag_out  gets the value of  fl ag_in ; otherwise, it keeps the same value that it had 
when the time window started. 
 

  

                        

 Figure 5.24 
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