Appendix A: Vivado Tutorial

1. Introduction

This tutorial is based on *Vivado HLx 2018.2 WebPACK* (free at xilinx.com). The circuit used in the tutorial is the registered unsigned adder of figure A.1a, synthesized with the VHDL code of figure A.1b. The adder inputs (*a*, *b*) are 3-bit signals, while its output (*sum*) is a 4-bit signal, so overflow never occurs. Both functional and timing simulations are shown using the stimuli of figure A.1c and in the following two situations: using a testbench (figure A.1d) and using a Tcl script (figure A.1e).

The structure of the work library created by Vivado is shown in figure A.2. The *registered_adder.srcs* folder contains all source files (files created by the user), divided into three categories: *sources_1* (design files), *sim_1* (simulation files), and *constrs_1* (constraint files). Note the file called *registered_adder.xpr*, which is the Xilinx project file; clicking on it opens the project.

2. Starting a New Project

a) Launch Vivado, which opens the screen of figure A.3a.

b) Click **Create Project** and **Next**, which leads to figure A.3b. Enter the project name (*registered_adder*) and the desired location for the project. Mark **Create project subdirectory** and click **Next**.

c) In figure A.3c, mark **RTL Project** (VHDL, in our case) and **Do not specify sources at this time**, then click **Next**.

d) In figure A.3d, select the FPGA device or the FPGA board. In this tutorial, the XC7A35TCPG236 Artix-7 FPGA is employed. Click **Next** and **Finish**, which finally opens the project Flow Navigator (figure A.4).

Note: The FPGA selection can be made or changed later at PROJECT MANAGER > Settings.

e) Observe on the lefthand side of figure A.4 the several sections of the Flow Navigator: PROJECT MANAGER, IP INTEGRATOR, SIMULATION, RTL ANALYSIS, SYNTHESIS,

Figure A.1

Figure A.2

IMPLEMENTATION, and PROGRAM AND DEBUG (compare to the design flow described in chapter 5).

3. Entering (and Testing) the Design File

Here, we must enter our VHDL design file (*registered_adder.vhd*, figure A.1b) The compiler will check the syntax and compile the code at register transfer level (RTL) level (no synthesis or placement yet), subsequently showing the corresponding elaborated design (i.e., the circuit, as understood from the VHDL code). The resulting schematic is equivalent to RTL View in Quartus Prime.

a) Under PROJECT MANAGER, click **Add Sources**, which opens the window of figure A.5a. Mark **Add or create design sources** and click **Next**.

b) In the next screen, click Create File (or click Add Files if the file is already available).

c) In figure A.5b, select VHDL and enter the file name (*registered_adder*), then click OK.

d) In figure A.5c, enter the entity name (*registered_adder*) and the architecture name (*rtl*). Click **OK** and then **Finish**.

e) In figure A.5d, note that **registered_adder...** is included in the Design Sources list and in the Simulation Sources list. Double click the former, which opens the editor (figure A.5f). Type the VHDL file (*registered_adder.vhd*, figure A.1b) and save it by clicking

f) In figure A.5e, open the General tab and select Type: VHDL 2008.

g) A very important feature of Vivado is that errors in the code of nonsupported VHDL constructs are underlined in red. Introduce an intentional error in the code to observe that.

h) RTL Analysis: We can now check how our code was understood by Vivado. Under RTL ANALYSIS, click **Open Elaborated Design**; when done, click **Schematic**. The resulting RTL view is shown in figure A.6, which matches the circuit of figure A.1a.

4. Doing Behavioral Simulation with Testbench

Notes:

1) Recall that functional simulation, still at the RTL stage, is called *behavioral* simulation. After Synthesis or after Synthesis plus Implementation, its equivalent is called *functional* simulation. *Timing* simulation only exists for the latter two cases.

2) In simple designs, one might opt for skipping behavioral and even functional simulation. Timing simulation is always indispensable.

3) The simulation described here uses a VHDL testbench (see chapter 18; the testbench file is that of figure A.1d). Another option, described in the next section, is to use a Tcl script.

a) The first step is to enter the VHDL testbench file. Under PROJECT MANAGER, click Add Sources, which opens the window of figure A.5a. This time, mark Add or create simulation sources and click Next.

b) In the next screen, click Create File (or click Add Files if the file is already available).

Add Sources	and a second sec	and the second second		×	
VIVADO.	Add Sources This guides you through the pro	ocess of adding and creatin	Create Source Create a new s project.	File	×
£ XILINX. (a)	Add or create design source Add or create gimulation so Add or create gimulation so Add or create gimulation so Eack Define Module Define a module and specify I/C For each port specified: MSB and LSB values will be i Ports with blank names will n	es urces 	Eile type: File name: Fil <u>e</u> location: (b)	VHDL registered_adder.vhd <local project="" to=""></local> 	✓ ✓ Cancel
	Module Definition Entity name: registe Architecture name: rtt I/O Port Definitions + - +	ered_adder (C)	8	
Sources X Netlist Q X \$ + V Design Sources (1 • • registered_z > Constraints V Simulation Sources > simulation Sources	? C ? • adder(rtt) (registered_adder.vhd) s (1) (d) Compile Order	C:/Xilinx_2018/my_desi Q III ibrary ieee; 2 use ieee.std_ 3 use ieee.nume 4 5 © entity regist 6 port (7 clk: in s	registered_adder.v gns/registered_adder &	na × nregistered_adden/registered_adde	er.srcs/sources_
Source File Properties registered_adder.vhd File nabled Location: C:/Xili Type: VHDL Library: vil_de Size: 0.5 Ki General Properties	? _ □ ⊑ ×	8 a, b: in : 9 sum, sum, 10 ← end entity; 11 : 12 ← architecture : 13 : begin 14 : sum <= std_ 15 ← process (clk 16 : begin 17 ← : if risi: 18 : sum_rr 19 ← end if; 20 ← end architect 21 ← end architect	<pre>std_logic_vector(rreg: out std_logi rtl of registered logic_vector(('0')) ng_edge(clk) then eg <= sum; ; ure; (f)</pre>	<pre>(2 downto 0); .c_vector(3 downto 0)); L_adder is & unsigned(a)) + unsigned(h</pre>	b));

c) In figure A.5b, select VHDL and enter the file name (*registered_adder_tb.vhd*), then click OK.

d) In figure A.5c, enter the entity name (*registered_adder_tb*, figure A.1b) and the architecture name (*testbench*). Click **OK** and then **Finish**.

e) In figure A.5d, note in the Sources pane that **registered_adder_tb** - ... is added to the Simulation Sources list. Double click it, which opens the editor (figure A.5f). Type the testbench file (*registered_adder_tb.vhd*, figure A.1d) and save it by clicking

f) In figure A.5e, open the General tab and select Type: VHDL 2008.

g) We can now run the simulation. Under SIMULATION, select **Run Simulation > Run Behavioral Simulation**, which leads to figure A.7a. Move *clk* to the top if not there yet. *Note:* To break a simulation, select **Run > Break**.

h) Make the following adjustments:

- Change the time to 320 ns at 320 ns 🗸
- Click the **Restart** icon **I**.
- Click the **Run for time** T icon **b**.
- Click the Zoom Fit icon 🚼.

- Select all signals except *clk* of figure A.7a, click the right mouse button, and change the radix to **Radix** > **Unsigned Decimal**.

The final result is shown in figure A.7b.

i) Finally, inspect the simulation results of figure A.7b and confirm that they comply with figure A.1c.

- j) Click 🐂 and then 🚼 for the simulation to advance another 320 ns.
- k) To end a simulation, close the wave pane or type close_sim -force in the Tcl console.

													1,000,	000 ps	
Name	Value		999,994	ps	999,995 ps	999,996	ps	999,997 p	os 999	,998 ps	999,99	9 ps	1,000,	.000 ps	1,000
]å clk	0												1		
> 😼 a[2:0]	5						5								
> 😼 b[2:0]	7						7								
> 😼 sum[3:0]	с						c								
> 😼 sum_reg[3:0]	с		a)				c								
														320.	000 ns
Name	Value	0 ns		50	ns	100 ns		150 ns		200 ns		250 r		.	300 ns
] <mark>ø</mark> clk	1								<u></u>				<u> </u>		
> 😼 a[2:0]	5	<u> </u>	X						5						
> 😼 b[2:0]	7	<u> </u>	X		2	<u> </u>		4				7			
> 😼 sum[3:0]	с		X		7	<u> </u>		9				c			
> 😼 sum_reg[3:0]	с		0) U		X	7				9	X		с		

Figure A.7

5. Doing Behavioral Simulation with Tcl Script

This section shows how to run a simulation using tool command language (Tcl, pronounced "tickle") scripts.

Note: If you prefer, you can remove the testbench file from the project by right-clicking on the file name and selecting **Remove File from Project**.

a) Review the Notes at the beginning of part 4 of this appendix.

b) The first step is to prepare the Tcl script (check appendix A1, *Some Important Tcl Commands for Vivado*, at the end of this tutorial). The script of figure A.1e will be used here. Assuming again that the clock period in figure A.1c is 80 ns, the total running time is 320 ns.

c) You can type the script in the Tcl console (**Window > Tcl Console**) one line at a time, or you can save it in a text file and run it all at once. For the former, proceed in (d); for the latter, jump to (g).

d) Under SIMULATION, select **Run Simulation > Run Behavioral Simulation**. This opens the waveforms pane of figure A.7a. Move *clk* to the top if not there yet.

e) Enter the Tcl commands. After entering **run 320** (and clicking **X**, if necessary), the screen of figure A.7b will be displayed.

f) Now that the simulation is done, play with the simulator by doing parts (h)–(k) of this appendix's part 4.

g) The Tcl script of figure A.1e can be typed in a text editor and saved (call it *registered_adder. tcl*) in the same folder the testbench file was saved before (i.e., *registered_adder.srcs/sim_1/new*). Another option is to use Vivado's editor as follows.

h) Under PROJECT MANAGER, click **Add Sources**, which leads to figure A.5a. Mark **Add or create simulation sources** and click **Next**.

i) In the next screen, click Create File.

j) In figure A.5b, select **Memory File** and enter the file name (*registered_adder.tcl*), then click OK.

k) Note in figure A.5d that this new file name appears under Memory File in the Simulation Sources list. Click on it; this opens the editor. Type the script, and save the file. Finally, in figure A.5e, change Memory File to TCL.

l) Run the Tcl file by selecting **Tools > Run Tcl Script** and pointing to the Tcl file. The result is that of figure A.7b.

m) Now that the simulation is done, play with the simulator by doing parts (h)–(k) of part 4 of this appendix.

6. Synthesizing the Design

a) Under SYNTHESIS, click Run Synthesis.

b) When finished, the window of figure A.8a opens. Cancel Implementation for now.

Figure A.8

c) Under SYNTHESIS, click on **Open Synthesized Design**, then open **Schematic**, which shows the circuit after synthesis (figure A.8b), which is the circuit that will actually be fitted and routed in the final (Implementation) phase.

d) Select **Window > Design Runs** or open the Design Runs tab in the lower part of the main window to see the resources usage. As shown in figure A.8c, three lookup tables (LUTs) and four flip-flops were employed to build this circuit.

7. Implementing the Design

a) Under IMPLEMENTATION, click Run Implementation.

b) When finished, observe that information similar to that in figures A.8b and A.8c is given here.

c) Observe also in the Project Summary window (click \sum if it is not open) that now **Synthesis Status = Complete** and **Implementation Status = Complete**. The resources usage is also summarized at the bottom of the screen.

8. Doing Functional Simulation with Testbench

Follow this appendix's part 4, except for part 4(g), in which you must select one of the following:

Simulation > Run Simulation > Run Post-Synthesis Functional Simulation or Simulation > Run Simulation > Run Post-Implementation Functional Simulation.

9. Doing Functional Simulation with Tcl Script

Follow part 5, except for part 5(d), in which you must select one of the following:

Simulation > Run Simulation > Run Post-Synthesis Functional Simulation or Simulation > Run Simulation > Run Post-Implementation Functional Simulation.

10. Doing Timing Simulation with Testbench

Follow part 4, except for part 4(g), in which you must select one of the following:

Simulation > Run Simulation > Run Post-Synthesis Timing Simulation or Simulation > Run Simulation > Run Post-Implementation Timing Simulation.

Timing simulation results are shown in figure A.9a. In figure A.9b, a zoomed-in view is shown, so propagation delays can be clearly observed.

		320.000 ns
Name	Value	0 ns 100 ns 200 ns 300 n
]å clk	1	
> 😼 a[2:0]	5	
> 😼 b[2:0]	7	
> 😼 sum[3:0]	c	<u>(0 X1 7 X 9 X8 c</u>
> 😼 sum_reg[3:0]	c	(a) 0 / 9 / c
Name	Value	140 ns 150 ns 1/160 ns 1/170 ns 180 ns 190 ns
] <mark>e</mark> clk	1	
> 😼 a[2:0]	5	
> 😼 b[2:0]	7	
> 😼 sum[3:0]	с	
> 😼 sum_reg[3:0]	с	(b) • • · · · · · · · · · · · · · · · · ·

11. Assigning Pins

a) Select Flow > Open Implemented Design.

b) Select **Window > I/O Ports** or click the **I/O Ports** tab at the bottom of the screen, which leads to figure A.10.

c) In the **Package Pin** column, enter the names of the pins to which the circuit ports should be routed. Mark them as **Fixed**.

d) Update the design by selecting **Implementation** > **Run Implementation** (this will include resynthesis).

12. Programming the FPGA

a) Select Flow > Open Implemented Design.

b) Under PROGRAM AND DEBUG, select Generate Bit Stream.

c) Under PROGRAM AND DEBUG, select **Open Hardware Manager** to program the FPGA.

d) Finally, play with the FPGA board to verify whether the implementation works as expected.

Tcl Console Messa	ages Log Repo	rts Design Runs	I/O Ports ×	DRC	Methodo
Q 素 € €	H H				
Name	Direction	Neg Diff Pair	Package Pin		Fixed
🗸 🗁 All ports (15)					
∨ 🖗 a (3)	IN				\checkmark
	IN		R18	~	1
	IN		P18	~	1
	IN		U16	~	\checkmark
✓ b (3)	IN				\checkmark
▷ b[2]	IN		M19	~	\checkmark
	IN		U17	~	\checkmark
- b[0]	IN		T17	~	

Figure A.10

Appendix A1. Some Important Tcl Commands for Vivado

• Command **add_wave**: Adds waveforms to the wave pane. Examples:

Examples:

add_wave clk Adds wave *clk* to the wave pane.

add_wave clk -after_wave rst Adds wave *clk* to the wave pane after the *rst* wave.

add_wave clk inp outp Adds waves *clk*, *inp*, and *outp* to the wave pane.

add_wave / Adds all ports in the design to the wave pane.

add_wave sum -radix dec Adds wave sum to pane with dec radix.

Note: Allowed radix values are bin (default), unsigned, dec (signed decimal), hex, oct, ascii.

Command add_force: Defines the shape and radix of the waveforms.
 Examples:

add_force clk {1 0} {0 40} -repeat_every 80 -cancel_after 2000

Wave *clk* has value = 1 at time = 0, then 0 at 40 ns, repeats after 80 ns, resulting T = 80 ns, and stops after 2 μ s.

add_force clk {1} {0 40} -repeat_every 80 -cancel_after 2000

Same as above (time = 0 does not need to be specified).

add_force inp1 {2} {5 40} -radix unsigned

Wave inp1 is 2 at time = 0, then 5 for time = 40 ns and higher, with unsigned radix (see radix options above).

add_force inp2 {-3} {3 40} {-8 250} -radix dec

Wave inp2 is -3 at time = 0, 3 at 40 ns, then -8 at 250 ns, signed decimal radix.

- Command launch_simulation: Opens a simulation.
- Command **run**: Runs a simulation.
 - Examples:

run 700 ns Runs simulation for 700 ns.

run 700 Same as above (default time unit is ns).

- Command **close_sim –force**. Ends simulation without saving waveforms.
- Command **restart**: Restarts a simulation.
- Command **current_time**: Gets the current time in the simulation.
- Command open_project: Opens a project.
 Example: open_project c:/xilinx/my_designs/registered_adder.xpr
- Command **open_report**: Displays or copies to an output file the contents of an RPX file. Examples:

open_report -file results1 design1.rpx Copies the contents of design1.rpx to file results1.
open_report design1.rpx Shows the contents of design1.rpx in the Tcl console.

Tcl script example: See figure A.1e, which contains the stimuli of figure A.1c.