
A review of combinational cir cuits was seen in chapter 1. As we know, a cir cuit is said to be 
combinational when its output depends uniquely on its preset input, so the cir cuit has no 
clock or memory. Regular arithmetic cir cuits are examples of combinational cir cuits  because 
the pre sent computation (say, a multiplication) is not affected by previous computations. The 
material in that chapter  will serve as basis for the examples and exercises in this chapter and 
in the next.

Purely concurrent VHDL code (i.e., without pro cesses) is proper for implementing only 
combinational cir cuits, for which the statements when, select, and generate are commonly 
used. Digital systems, however, usually include sequential cir cuits, for which sequential code 
(and therefore sequential statements, like if, case, and loop) is needed. Concurrent code is 
studied in chapters 10 and 11, while sequential code (which can infer both sequential and 
combinational cir cuits) is studied in chapters 12 and 13.

It is also impor tant to emphasize that many combinational cir cuits can be constructed 
without any formal statement thanks to the large collection of predefined operators (which 
are just function calls, as seen in chapter 9) and to the easiness with which data arrays can be 
constructed and manipulated in VHDL (as seen in chapter 8). As an example of the former, 
see example 6.1; for the latter, see example 8.1.

10.1 Concurrent Statements

In figure 6.1 we had a global view of a VHDL design code’s structure. The architecture body, 
being the region where the cir cuits are constructed, is naturally the most complex part, so it 
is in that region that we concentrate our efforts in this chapter and the next three.

Figure 10.1a shows what can be used to construct an architecture body. It can contain 
only concurrent statements (recall that VHDL is inherently concurrent rather than sequen-
tial), which are the following: when statements; select statements; generate statements; 
pro cess statements; component instantiation statements; and procedure call statements (block 
and assertion statements  were left out— the first,  because of its rare usage; the second, 

10 Concurrent Code



244 Chapter 10

 because it is not used to generate hardware but rather to test it, so it  will be seen in chap-
ter 14).  Because  these statements are concurrent, their relative positions in the code do 
not  matter.

Note that function call was also included in the list of figure 11.1a. The reason for its 
being between parentheses is  because function calls are not statements but rather part of 
expressions (chapter 14). For instance, the predefined operators (chapter 9) are function 
calls.

A special statement in this list is the pro cess statement. Although as a  whole it is concur-
rent with re spect to all other statements, internally it is sequential, so only sequential state-
ments (listed in figure 10.1b) can be used inside a pro cess. Note that some statements appear 
in both (concurrent and sequential) lists.

The formal designations for the concurrent statements of figure 10.1a, according with the 
IEEE 1076 standard, are shown in  table 10.1. Brief comments for each case follow.

Concurrent signal assignment statements: This category contains two very useful statements, 
called when and select. They are referred to as conditional signal assignment and selected signal 
assignment statements, respectively. Their original (concurrent) version is proper only for the 
construction of combinational cir cuits.

Generate statements: As shown in  table 10.1,  there are three versions of generate. The most 
common is for- generate, which acts as a loop that replicates a number of times a section of 

Figure 10.1
(a) Concurrent and (b) sequential VHDL statements, all synthesizable (function call is not a statement 

but was included for clarity; see the text).
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code containing only concurrent statements. In summary, a loop is called generate in concur-
rent code (figure 10.1a) and loop in sequential code (figure 10.1b).

Pro cess statement: The only VHDL units that are not (internally) concurrent are pro cess and 
subprograms (the latter consist of functions and procedures). However, of  these, only pro cesses 
are built directly in the statement part of an architecture body, and, as already mentioned, 
any pro cess is concurrent with re spect to all other statements as a  whole. As  will be seen in 
chapter 12, despite being sequential, a pro cess can be used to construct both sequential and 
combinational cir cuits.

Component instantiation statement: This statement allows previous designs (which can be 
combinational or sequential) to be included as part of a new design, hence allowing code 
reusability and IP inclusion. It also allows the construction of hierarchical (structural) code. 
Component instantiations are always concurrent, so they cannot be done in sequential units 
(pro cess and subprograms).

Concurrent procedure call statement: As already mentioned, VHDL subprograms consist of 
functions and procedures. However, while a function is called as part of an expression (for 
example, “if rising_edge(clk) then … ”, where rising_edge is a function, or “y <= a + b;”, 
where “+” is a function), a procedure call is a statement on its own (for example, “add(a, 
b, cin, sum, cout);”). Both (procedure and function) calls are allowed in concurrent (and 
sequential) code.

The main goal of this chapter is to describe and emphasize all that is needed to design com-
binational cir cuits using concurrent VHDL code. In the same way, chapter 12  will describe 
and emphasize all that is needed to design both combinational and sequential cir cuits using 
sequential VHDL code. This separation is impor tant  because, as seen in chapters 1 and 2, such 
cir cuits are analyzed and designed differently.

 Table 10.1
Main concurrent statements

Category/Subcategory Statements Studied in

Concurrent signal  
assignment statements

Conditional assignment when Section 10.2

Selected assignment select Section 10.3

Generate statements

for … generate

Section 10.4if … generate

case … generate

Pro cess statement pro cess Section 12.3

Component instantiation statement component instant. Section 10.5

Concurrent procedure call statement procedure call Section 14.4
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In summary, this chapter describes the following concurrent statements: when, select, gen-
erate, and component instantiation. The  others (pro cess and subprogram calls), since they 
are internally sequential, are studied separately, in chapters 12–13 and 14, respectively. Two 
special cases of concurrent code are also discussed in this chapter: (1) how to avoid assigning 
a value to a signal more than once and (2) how to implement arithmetic cir cuits properly in 
VHDL.

10.2 The when Statement

As seen in  table 10.1, an assignment using the when statement is called a conditional assign-
ment. Its syntax is presented below in two versions; note that the first ends with “ else value,” 
while the second ends with “when condition.”

target <= value when condition  else
          value when condition  else
          value;

 

target <= value when condition  else
          value when condition  else
          value when condition;

The target in the syntax above is a signal (VHDL-2008 allows when to be used also in 
sequential code, so  there the target can be also a variable). The value can range from a 
 simple static value up to elaborate expressions involving several values. Any number of 
tests is allowed, but only a few are usually employed (straightforward truth  tables, which 
can be long, should be entered using the select statement as described in the next section). 
Indeed, note in the syntaxes above that the when statement has a priority- encoding nature 
(for any given line to be executed, the tests in all preceding lines must return false) and 
hence are definitely not tailored for entering straightforward truth  tables (though that is 
not illegal).

A typical use for when is shown below (see the complete code in example 7.1). Note that it 
contains only one test, and the version ending in “ else value” is employed.

outp <= inp when ena  else ( others => 'Z');  --multi-bit tri-state buffer (example 7.1)

Another example is shown below, using again the syntax ending in “ else value.” The 
option on the left (VHDL-2008) is slightly less verbose, while that on the right is slightly 
clearer. Observe again the priority- encoding nature of when; for example, if a = '1', the out-
put is "01", regardless of b, c, and d, so the second line is equivalent to outp = "10" if a ≠ '1' 
and b = '0'. Note also that it would take a substantial effort to explic itly describe all pos si ble 
conditions for a, b, c, and d.
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outp <= "01" when a  else outp <= "01" when a='1'  else
        "10" when not b  else         "10" when b='0'  else
        "11" when c xor d  else         "11" when (c xor d)='1'  else
        "--";         "--";

The advantage of ending with “ else value” is that it guarantees complete input- output 
mapping coverage, so the compiler  will not infer latches (explained shortly). On the other 
hand, the statement ending with “when condition” is more informative  because all condi-
tions are shown explic itly. In practice, explicit full- mapping descriptions are often not  viable, 
particularly when using standard- logic types.

An example where explicit full description is  viable is shown below and implements the 
multiplexer of figure 1.3a. The option on the left (ending with “when condition”) is obviously 
more informative than that on the right (ending in “ else value”). (Recall, however, that  because 
this is just a straightforward truth  table, select is the recommended statement to implement it.)

Ending in when condition: Ending in  else value:

y <= a when sel=0  else y <= a when sel=0  else
     b when sel=1  else      b when sel=1  else
     c when sel=2  else      c when sel=2  else
     d when sel=3;      d;

The next example illustrates incomplete versus complete in- out mapping coverage. If the 
code on the left is employed, what should the output be, for example, when rst, hold, and 
run are all low? Since the compiler  will execute anyway, it must make a decision that typi-
cally is to infer latches to hold the output’s current value. Such latches are highly undesirable 
 because they add delays (which, by the way, are poorly predictable in FPGAs  because latches 
are not built-in cir cuits), besides wasting hardware and power resources. Contrary to that, 
the code on the right provides a full in- out mapping description (it ends in “ else value”), so 
latch inference does not occur.

Bad (infers latches): Fine (complete truth  table coverage):

outp <= "00" when rst  else outp <= "00" when rst  else
        "01" when hold  else         "01" when hold  else
        "11" when run;          "11" when run  else
         "--";

Note: When the output of a truth  table is registered (which can occur in sequential cir cuits), a 
full truth  table description is not necessary (latches  will not be inferred  because the result is 
already stored in memory anyway).

The unaffected keyword (section 12.5) or, equivalently, the null statement can be used with 
when. However, in combinational cir cuits that  causes the inference of latches, so neither 
should be employed in codes that are for synthesis.
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10.3 The select Statement

As seen in  table 10.1, an assignment using the select statement is called a selected assignment. 
Its main use is to enter truth  tables, which select does better than when for two reasons: first, 
select does not posses the priority- encoding nature of when; second, full truth  table coverage 
is checked automatically by the compiler, which is not  running the compilation if the  table 
is not completely described (hence preventing the inference of latches always).

The syntax for select statements is presented below, in two versions. Note that the first 
ends with “when  others,” while the second ends with “when choice.”

with expression select
   target <= value when choice,
             value when choice,
             value when  others;

 

with expression select
   target <= value when choice,
             value when choice,
             value when choice;

The version on the left above employs the keyword  others to cover all remaining cases, 
while the version on the right describes the entire truth  table explic itly, leading to a more 
informative code. However, as mentioned previously, in most cases only the former is  viable.

The target in the syntax above is a signal (VHDL-2008 allows select to be used also in 
sequential code, so  there the target can be also a variable). The value can range from a  simple 
static value up to elaborate expressions involving several values. In the choice expressions, 
the following can be used: to (for ascending index direction), downto (descending direction), 
“|” (interpreted as or), and the keyword  others. Regarding the unaffected keyword or, equiva-
lently, the null statement, see the comment at the end of section 10.2.

The example below shows an implementation for the multiplexer of figure 1.3a. Since in 
this case expressing all choices explic itly takes the same effort as using the  others keyword, 
the code on the right, being more informative, is preferred.

with sel select with sel select
   y <= a when 0,    y <= a when 0,
        b when 1,         b when 1,
        c when 2,         c when 2,
        d when  others;         d when 3;

The select? statement
The matching select statement (select?) employs the matching equality comparator (?=), 
which, as seen in section  9.1.3, assumes the following for std_ulogic values: '0'='L', 
'1'='H', and '−'=any value. Any other combination returns 'U' or 'X' or '0'. This state-
ment is particularly useful when the truth  table contains “ don’t care” values at the input, 
as illustrated in the example below (for “ don’t care” values at the output, see example 7.2).
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Example 10.1. Priority encoder
The code below implements the priority encoder of figure 1.6.a. As usual, it starts with a 
packages list (lines 2–3,  here with just one package), followed by the entity declaration (lines 
5–9, using only type std_logic_vector for the cir cuit ports) and the architecture body (lines 
11–19). Note the use of select? (lines 13–18)  because “ don’t care” inputs are involved. Observe 
also that the statement ends with “when  others,” so all truth  table entries are covered, allow-
ing select? to be synthesized.

 1 --------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 
 5 entity priority_encoder is   
 6    port (
 7       inp: in std_logic_vector(3 downto 0);
 8       outp: out std_logic_vector(3 downto 0));   
 9 end entity;
 10 
 11 architecture lut of priority_encoder is
 12 begin
 13    with inp select?
 14       outp <= "1000" when "1---",
 15               "0100" when "01--", 
 16               "0010" when "001-",
 17               "0001" when "0001",
 18               "0000" when  others;
 19 end architecture;
 20 --------------------------------------------------

10.4 The generate Statement

As seen in  table 10.1,  there are three versions for this statement: for- generate, if- generate, and 
case- generate. They are described below.

for- generate:

label: for identifier in generate_range generate
   [generate_declarative_part
begin]
   concurrent_statements
end generate [label];
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This is the most frequently used form of generate. It acts as a loop, but  because it is a con-
current statement, a piece of hardware is inferred  every time the loop goes around (hence 
generate is indeed a well- chosen name).

An example is shown below, with two equivalent versions (that on the right uses the range 
and left attributes, seen in section 9.3.2, which help in the construction of pa ram e terized 
code). Each time the generate loop goes around, an XOR gate is inferred, so the cir cuit of 
figure 10.2 is produced.

signal a, b, x: std_ulogic_vector(7 downto 0); 
...                                   ...
gen: for i in 0 to 7 generate         gen: for i in x'range generate
   x(i) <= a(i) xor b(7-i);                x(i) <= a(i) xor b(b'left-i);
end generate;                         end generate;

The hardware instantiated by the generate statement can be an entire design that we want 
to include as part (i.e., a component, in VHDL language) of a new, larger design. That  will be 
seen in section 10.5.

The other two forms of generate are shown below.

if- generate: case- generate:

  label: if condition generate   label: case expression generate

    concurrent_statements;       when choice =>

  [elsif condition generate          concurrent_statements;

    concurrent_statements;]       when choice =>

  [ else generate          concurrent_statements;

    concurrent_statements;]       ...

  end generate [label];   end generate [label];

Figure 10.2
Hardware produced by a generate statement.
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 These are conditional forms of generate. The syntaxes for if and case are similar to  those 
for the sequential if and case statements (chapter 12). An application for  these generate state-
ments is to choose between dif fer ent hardware specifications determined, for example, by a 
generic constant, as in the example below.

Example 10.2. Conditional adder instantiation
Say that we have a library of standard cells, among which are unsigned and signed adders of 
generic size. The unsigned version, called adder_unsigned, is shown in the first of the two codes 
below (to obtain the other version, just replace the word “unsigned” with “signed”). The number 
of bits is determined by the generic constant WIDTH (line 8), whose value can be left unspeci-
fied  because it can/will be overwritten by the generic map association during instantiation.

The second code below is the main code, in which one of  these adders is instantiated. 
The se lection is made by a generic constant, called POLARITY (line 7), which points to the 
unsigned version when low (lines 18–19) or the signed version other wise (lines 20–21). Note 
that the instantiation is done using the conditional case- generate statement (lines 17–22); 
another option would be to use the if- generate statement, but for  simple cases the former is 
preferred. (Component instantiation details are presented in the next section.)

 1 ---------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use ieee.numeric_std.all;
 5 
 6 entity adder_unsigned is   
 7    generic (
 8       WIDTH: natu ral);
 9    port (
 10       in1, in2: in std_logic_vector(WIDTH-1 downto 0);
 11       sum: out std_logic_vector(WIDTH-1 downto 0));   
 12 end entity adder_unsigned;
 13 
 14 architecture adder_unsigned of adder_unsigned is
 15 begin
 16    sum <= std_logic_vector(unsigned(in1) + unsigned(in2));
 17 end architecture adder_unsigned;
 18 ---------------------------------------------------------------
 
 1 ------------------------------------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 
 5 entity adder is   
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 6    generic (
 7       POLARITY: std_logic := '1';
 8       NUM_BITS: natu ral := 32); 
 9    port (
 10       a, b: in std_logic_vector(NUM_BITS-1 downto 0);
 11       sum: out std_logic_vector(NUM_BITS-1 downto 0));
 12 end entity adder;
 13 
 14 architecture with_std_cell of adder is
 15 begin
 16 
 17    gen_adder: case POLARITY generate
 18       when '0' =>
 19          adder: entity work.adder_unsigned generic map (NUM_BITS) port map (a, b, sum);

 20       when  others =>
 21          adder: entity work.adder_signed generic map (NUM_BITS) port map (a, b, sum);
 22    end generate;
 23 
 24 end architecture with_std_cell;
 25 -----------------------------------------------------------------------------------------

10.5 Component Instantiation Statements

As seen in figure 10.1, component instantiation statements are also concurrent statements, so 
they are not allowed in sequential units (i.e., pro cess and subprograms). A single instantia-
tion can be done directly, but looped instantiations require the generate statement, which, as 
we saw, plays the role of loop in concurrent code.

A previous design (i.e., a complete VHDL code) can be instantiated as part of another 
design in two equivalent ways: using a component instantiation or using a design entity instan-
tiation. Both cases are described next.

10.5.1 Component Instantiation
To instantiate a component, a component declaration plus a component instantiation state-
ment are needed, as shown below.

component component_name [is]
   [generic (...);]
   port (...);
end component [component_name];

  

label: [component] component_name
   [generic map (generic_association_list)]
   port map (port_association_list);
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The component declaration (on the above left) consists simply of a copy of the entity 
declaration of the design to be instantiated with the word entity replaced with the word com-
ponent. The component name is the same as its entity’s name. The typical location for this 
declaration is the declarative part of architecture, package, or generate statement.

The component instantiation statement (syntax on the above right) provides the (possi-
bly new) names and values for the generic par ameters by means of generic map, and the port 
mapping between the instantiated design and the current design by means of port map. The 
mapping associations can be named or positional; in the former, each association is explic itly 
named, while in the latter each position of the instantiated design is associated to the same 
position in the current design. Fi nally, if a port must be left unconnected in the instantiation, 
the keyword open should be used for it in the port map.

The example below shows, on the left, an entity called brick, of a design that is  going to be 
instantiated by another design, whose entity, called wall, is shown on the right:

entity brick is entity wall is
   generic (    generic (
      NUM_BITS: positive);       WIDTH: positive := 32);
   port (    port (
      a, b: in ...;       x, y: in ...;
      c: out ...);       z: out ...);
end entity brick; end entity wall;

Corresponding component instantiations, labeled comp, are shown below:

--Component instantiation with named association:
comp: brick generic map (NUM_BITS => WIDTH) port map (a => x, b => y, c => z);

--Component instantiation with positional association:
comp: brick generic map (WIDTH) port map (x, y, z);

Signal expressions in port map are allowed  after VHDL-2008, as illustrated below:

... port map (x1 => y1, x2 => y2 and y3, x3 => to_unsigned(y4));

A complete component instantiation  will be presented in example 10.3.

10.5.2 Design Entity Instantiation
This is another way of instantiating one design as part of another. As shown in the syntax 
below, an advantage  here is that the component declaration is not needed. The instantiated 
code is allowed to have multiple architectures  because that of interest to the pre sent design 
can be specified in the optional architecture_name field. The work.entity_name declaration 
assumes that the entity_name.vhd file is pre sent in the proj ect directory.
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label: entity work.entity_name [(architecture_name)] 
  [generic map (generic_association_list)]
  port map (port_association_list);

The instantiations below are again for the brick and wall cir cuits, so they can be compared 
to the previous component instantiations.

--Design entity instantiation with named association:
comp: entity work.brick generic map (NUM_BITS => WIDTH) port map (a => x, b => y, c => z);

--Design entity instantiation with positional association:
comp: entity work.brick generic map (WIDTH) port map (x, y, z); 

Example 10.3. Carry- ripple adder built with full- adder components
The full- adder unit and the carry- ripple adder  were reviewed in sections  1.5.1 and 1.5.2, 
respectively. In this example we use the full adder of figure 1.12a to build the carry- ripple 
adder of figure 1.13b.

Solution 1: Using design entity instantiation
The first code below is for the full- adder unit, with the outputs calculated using boolean 
equations (lines 13–14). Note that std_logic_1164 is the only package needed in the pack-
ages list (lines 2–3). The second code is for the carry- ripple adder. In the entity declaration 
(lines 5–13), a generic constant called NUM_BITS (line 7) is used to specify the number of bits 
(which is also the number of full- adder units) in this cir cuit. In the architecture body (lines 
15–24), a signal called carry is declared (line 16) to represent the internal cir cuit nodes (carry 
interface between the full- adder units). Next, a for- generate statement (lines 19–22) is used to 
do the instantiations (recall that a loop is called loop in sequential code, but it is called gener-
ate in concurrent code). Fi nally, observe that the instantiation (lines 20–21) was done using 
the design entity instantiation option (seen in this section), with positional association in the 
port map.

 1 ----------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 
 5 entity full_adder_unit is   
 6    port (
 7       in1, in2, cin: in std_logic;
 8       sum, cout: out std_logic);
 9 end entity;
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 10 
 11 architecture boolean of full_adder_unit is
 12 begin
 13    sum <= in1 xor in2 xor cin;
 14    cout <= (in1 and in2) or (in1 and cin) or (in2 and cin);
 15 end architecture;
 16 ----------------------------------------------------------------
 
 1 ----------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 
 5 entity carry_ripple_adder is   
 6    generic (
 7       NUM_BITS: natu ral := 8);
 8    port (
 9       a, b: in std_logic_vector(NUM_BITS-1 downto 0);
 10       cin: in std_logic;
 11       sum: out std_logic_vector(NUM_BITS-1 downto 0);
 12       cout: out std_logic);
 13 end entity;
 14 
 15 architecture structural of carry_ripple_adder is
 16    signal carry: std_logic_vector(0 to NUM_BITS);
 17 begin
 18    carry(0) <= cin;
 19    gen_adder: for i in 0 to NUM_BITS-1 generate
 20       adder: entity work.full_adder_unit 
 21          port map (a(i), b(i), carry(i), sum(i), carry(i+1));
 22    end generate;
 23    cout <= carry(NUM_BITS);
 24 end architecture;
 25 ----------------------------------------------------------------

Solution 2: Using component instantiation
The architecture below shows the modifications needed in the code above to use the compo-
nent instantiation option, studied in the previous section. It requires a component declaration 
(lines 17–21) plus a component instantiation statement (line 25). In this case, the compo-
nent declaration (which is just a copy of the full- adder’s entity) is located in the declarative 
part of the architecture. Another option is to locate it in the declarative part of the generate 
statement (the keyword begin is then required), as shown in the subsequent code. Recall that 
still another popu lar place for component declarations is a package.
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 15 architecture structural of carry_ripple_adder is
 16    signal carry: std_logic_vector(0 to NUM_BITS);
 17    component full_adder_unit is   
 18       port (
 19          in1, in2, cin: in std_logic;
 20          sum, cout: out std_logic);
 21    end component;
 22 begin
 23    carry(0) <= cin;
 24    gen_adder: for i in 0 to NUM_BITS-1 generate
 25       adder: full_adder_unit port map (a(i), b(i), carry(i), sum(i), carry(i+1));
 26    end generate;
 27    cout <= carry(NUM_BITS);
 28 end architecture;
 29 --------------------------------------------------------------------------------------
 
 15 architecture structural of carry_ripple_adder is
 16    signal carry: std_logic_vector(0 to NUM_BITS);
 17 begin
 18    carry(0) <= cin;
 19    gen_adder: for i in 0 to NUM_BITS-1 generate
 20       component full_adder_unit is   
 21          port (
 22             in1, in2, cin: in std_logic; 
 23             sum, cout: out std_logic);
 24       end component;
 25    begin
 26       adder: full_adder_unit port map (a(i), b(i), carry(i), sum(i), carry(i+1));
 27    end generate;
 28    cout <= carry(NUM_BITS);
 29 end architecture;
 30 --------------------------------------------------------------------------------------

10.6 Avoiding Multiple Assignments to the Same Signal

This section and the next discuss two special cases related to concurrent code. The first (in 
this section) introduces a way to circumvent the fact that a signal cannot receive multiple 
assignments in concurrent code. The second (next section) shows recommendations regard-
ing the implementation of arithmetic cir cuits in VHDL.

As we know, VHDL code is inherently concurrent, so any distribution of the statements 
(listed in figure 10.1) must lead to the same result. Consequently, we cannot assign a value 
to a signal somewhere in the code and then assign another value to it  later, believing that 
the compiler should simply consider the last value as the valid one  because that could lead 
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to dif fer ent cir cuits depending on the relative positions of the statements (that would be fine 
only in regions of sequential code, studied in chapters 12–13).

A solution when multiple assignments are necessary is to create an internal signal with an 
extra dimension (for example, with dimension 1D × 1D if the target signal is 1D— see  figure 8.1) 
and use it to do the computations, passing then the last ele ment value of that signal to the 
target signal. This approach is illustrated in the example below.

Note: It  will be shown in chapter 12 (example 12.11, process P1) that the technique above 
is not necessary when using sequential code and a variable to do the computations, which 
simplifies the solution.

Example 10.4. Hamming- weight calculator
The code below implements a cir cuit that determines the Hamming weight (HW) of a vec-
tor, which is the number of 1s in it. The input and output are inp_vector and hamm_weight, 
respectively.

Solution 1: As usual, the code starts with declarations regarding the packages needed in 
the design (lines 2–4); std_logic_1164 is needed  because the type std_logic_vector is used 
in the cir cuit ports (lines 11–12), while numeric_std is needed  because the type unsigned is 
employed for type conversion (line 23— see details about integer to std_logic_vector con-
version in section 7.10.3).

The entity declaration (lines 6–13) starts with a generic list (lines 8–9), which allows the 
construction of a pa ram e terized code. Note that if the minimum number of bits is wanted 
for BITS_OUT, then BITS_OUT is no longer an in de pen dent constant but rather a function 
of BITS_IN— that is, BITS_OUT = ⎡log2(BITS_IN + 1)⎤ (see comments  after the code). Next come 
the cir cuit ports (lines 11–12) using only the type std_logic_vector.

The architecture body (lines 15–24) starts with type and signal declarations (lines 16–17). 
This 1D × 1D signal (an array of integers) is needed  because, to follow the strategy just 
described, a signal with an extra dimension with re spect to the signal to be mea sured (an 
integer, hence 1D, according to figure 8.1) is needed. The statement part employs a loop 
(lines 20–22— recall that loops are produced by the generate statement in concurrent code) to 
produce the internal values, the last of which is passed to the output (line 23).

 1 --------------------------------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use ieee.numeric_std.all;
 5 
 6 entity hamming_weight_calculator is
 7    generic (
 8       BITS_IN: positive := 16;
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 9       BITS_OUT: positive := 5);   --calculated by user as ceil(log2(BITS_IN+1))
 10    port (
 11       inp_vector: in std_logic_vector(BITS_IN-1 downto 0);
 12       hamm_weight: out std_logic_vector(BITS_OUT-1 downto 0));
 13 end entity;
 14 
 15 architecture concurrent of hamming_weight_calculator is
 16    type integer_array is array (0 to BITS_IN) of integer range 0 to BITS_IN; 
 17    signal internal: integer_array;
 18 begin
 19    internal(0) <= 0;
 20    gen: for i in 1 to BITS_IN generate
 21       internal(i) <= internal(i-1) + 1 when inp_vector(i-1) else internal(i-1);
 22    end generate;
 23    hamm_weight <= std_logic_vector(to_unsigned(internal(BITS_IN), BITS_OUT));
 24 end architecture;
 25 --------------------------------------------------------------------------------------

Solution 2: An option to improve the code above is to employ an expression in the generic 
list, as shown below, but check restrictions and other comments as noted in section 6.7.

use ieee.math_real.all;
...
   generic (
      BITS_IN: positive := 16;
      BITS_OUT: positive := integer(ceil(log2(real(BITS_IN+1))))); --a dependent constant
   port (...

Solution 3: The most formal solution is to list only the truly independent constants in the 
generic list, as shown below, leaving the log2 computation for the range specifications (hence 
with increased verbosity):

entity hamming_weight_calculator is
   generic (
      BITS_IN: positive := 16);
   port (
      inp_vector: in std_logic_vector(BITS_IN-1 downto 0);
      hamm_weight: out std_logic_vector(integer(ceil(log2(real(BITS_IN+1))))-1 downto 0)));
end entity;

architecture concurrent of hamming_weight_calculator is
   constant BITS_OUT: positive := integer(ceil(log2(real(BITS_IN+1))));
   ...
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10.7 Suggested Approaches for Arithmetic Cir cuits

This is the second of the two special cases mentioned previously regarding concurrent code. 
It deals with arithmetic cir cuits, for which implementation suggestions are presented below.

Arithmetic cir cuits, reviewed in sections 1.5 and 1.6, are  those for which sign  matters. 
Therefore, the use of the type integer, for example, is not a good idea  because the code then 
 will not show explic itly  whether the system is signed or unsigned (that is determined by the 
compiler upon inspecting the range specified for the involved integers).

The types recommended for arithmetic cir cuits, with the respective packages of origin 
(which must then be included in the code’s packages list— the second option for some of the 
packages below is for default par ameters) are the following:

• For integer arithmetic: unsigned or signed (package numeric_std).

• For fixed- point arithmetic: ufixed or sfixed (package fixed_generic_pkg or fixed_pkg).

• For floating- point arithmetic: float (package float_generic_pkg or float_pkg).

For conciseness, in this section we  will refer to  these types as “arithmetic” types.
It is impor tant, however, to try to always use the same types for the interface signals (cir-

cuit ports) to allow direct connection between system blocks (in large proj ects) and help 
reusability. The standard- logic types (std_ulogic, std_logic, std_ulogic_vector, and std_
logic_vector) are  here considered the default types for that role. Only in par tic u lar cases 
should the arithmetic types be used directly in the cir cuit ports (for example, when it is a 
stand- alone design and reusability is not an issue or when a port type must be a user- defined 
type).

Suggested procedure

Before the VHDL code:

1) Make sure that the cir cuit is arithmetic and decide which “arithmetic” type to use (see 
comment on integer versus floating point, presented next).

2) List all arithmetic operations involved (as seen in section 9.1.2, the predefined arith-
metic operators are +, −, *, /, **, rem, mod, and abs). Then check, using  table 9.4, the con-
straints for each operator; for example, for types unsigned and signed, the “+” and “−” 
operators require the result to have the same number of bits as the largest operand, while 
the “*” operator requires the number of bits in the result to be equal to the sum of the bits 
in the operands.

3) Decide how to deal with overflow (section 1.6.1) in case the constraints above might 
cause the cir cuit to be subject to overflow. If overflow is not acceptable, one solution is to 
extend the operands and the result (the resize function is in section 7.9.3); if it is acceptable 
but must be flagged, decide how that flag  will be produced.
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In the VHDL code:

1) As a general rule, use only standard- logic types for the cir cuit ports (see pos si ble excep-
tions listed above).

2) In the architecture, convert the std_ulogic_vector or std_logic_vector inputs to one 
of the arithmetic types. Recall that single- bit standard- logic types (std_ulogic and std_
logic) do not need any conversion.

3) Do the computations.

4) Convert the multi- bit results to standard- logic vector types and send them out (along 
with all single- bit standard- logic results, of course).

5) Carefully simulate your design.

Examples of arithmetic cir cuits implemented using the suggestions above are presented  after 
the following comment.

Integer (or fixed-point) versus floating-point Floating point should be avoided whenever 
pos si ble  because of its high consumption of resources (hardware, primarily, but also some 
power; speed might also be impaired). One procedure that might help that decision is to define 
some error pa ram e ter for the target application and establish a maximum acceptable value 
for it and then run a corresponding analy sis tool (Matlab, for example). Say that the analy sis 
starts with 32- bit floating point, which passes the maximum- error test; the number of bits in 
the exponent and fraction should then be reduced gradually  until the error limit is reached. 
This should then be repeated for integer (or fixed point)  until the minimum number of bits is 
again obtained. Both should then be implemented in VHDL to check the amount of hardware 
consumed for the same device or technology in each case (plus other par ameters, like maxi-
mum speed). As a practical example, this procedure could be applied to the sine calculator of 
example 11.3, for which the total harmonic distortion (THD) could be used as error pa ram e ter.

Example 10.5. Signed integer adder
Figure  10.3a shows a fully equipped N- bit signed integer adder, where a and b are the 
addends, cin and cout are the carry-in and carry- out bits, sum is the core result, and oflow 
is an overflow flag.

Note that this adder contains all optional outputs (cout, oflow, and sum(N)), as seen in 
section 1.6.3; even though this kind of cell is usually not built with all three (see figure 1.21b), 
the purpose here is to practice with all possibilities.

The time be hav ior is illustrated in figure 10.3b, where the values of a and b are {−8, 0, 
7, −8, 0, 7} and {−8, −7, 5}, respectively. It is left to the reader to complete it for  later com-
parison against simulation results obtained  after synthesizing the code that follows. (Signed 
integer addition was reviewed in section 1.6.3, and signed/unsigned types  were studied in 
section 7.6.3).
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Since this is an arithmetic cir cuit, we  will follow the suggestions presented above. The 
right type is signed, and the only operator to be used is “+”. Consulting  table 9.4, we observe 
in comment (8) that the size of the output must be the same as that of the largest input.

A VHDL solution is presented below. To make it clear, a step- by- step code is shown. The 
packages list (lines 2–4) contains the packages std_logic_1164 ( because standard- logic types are 
employed for the cir cuit ports) and numeric_std ( because type signed is used in the computa-
tions). In the entity declaration (lines 6–14), a generic constant (line 8; N is called NUM_BITS in 
the code) defines the number of bits in the multi- bit signals. Also, to make it clear that sum(N) 
is an optional output, it is called sumMSB (sum’s new most significant bit, if used) in the code.

The architecture body (lines 16–30) starts with the declaration of a signal called sum_sig 
(line 17), with NUM_BITS + 1 bits, which  will be used to hold the sum temporarily. The sum 
(line 21) employs sign- extension and conversion to signed. The MSB of this extended sum 
(with NUM_BITS + 1 bits) is sumMSB (line 26), while all other bits constitute the original sum 
(line 25). Notice that the sum is converted to std_logic_vector before being sent out. Fi nally, 
the cout (line 27) and oflow (line 28) outputs are calculated using the equations of figure 1.22a.

 1 ----------------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use ieee.numeric_std.all;
 5 
 6 entity adder_signed is
 7    generic (
 8       NUM_BITS: integer := 4); 
 9    port (
 10       a, b: in std_logic_vector(NUM_BITS-1 downto 0);
 11       cin: in std_logic;
 12       sum: out std_logic_vector(NUM_BITS-1 downto 0);
 13       cout, oflow, sumMSB: out std_logic);
 14 end entity;

Figure 10.3
Signed adder of example 10.5.
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 15 
 16 architecture suggested of adder_signed is
 17    signal sum_sig: signed(NUM_BITS downto 0);
 18 begin
 19 
 20    --Sign-extension, conversion to signed, and addition:
 21    sum_sig <= signed(a(NUM_BITS-1) & a) +  signed(b) + cin;
 22    --sum_sig <= resize(signed(a), NUM_BITS+1) +  signed(b) + cin; 
 23 
 24    --Conversion to std_logic_vector plus single-bit calculations:
 25    sum <= std_logic_vector(sum_sig(NUM_BITS-1 downto 0));
 26    sumMSB <= sum_sig(NUM_BITS);
 27    cout <= a(NUM_BITS-1) xor b(NUM_BITS-1) xor sumMSB;
 28    oflow <= sumMSB xor sum(NUM_BITS-1);
 29 
 30 end architecture;
 31 ----------------------------------------------------------------------

Four additional observations about line 21 follow. First, an equivalent construction using 
the resize function (section 7.9.3) is shown in line 22. Second,  table 9.4 tells us that a signed 
value can be added to another signed, integer, or std_ulogic value, so the fact that the 
sum includes a single- bit value is fine, but that was not so before VHDL-2008; if your com-
piler does not support that feature yet, a solution is to extend that bit by using ('0' & cin) 
or ('0', cin). The third observation is that only one of the inputs needs sign- extension 
 because the output of addition for signed is required to have the same number of bits as the 
largest input. The final observation regards the number of adders: even though two sums 
appear in line 21, the compiler  will understand that the last addend is just a carry bit, so 
a single adder with carry-in port  will be inferred. Just out of curiosity, below is a solution 
using a single “+” operator, where an extra bit is appended at the right end of a and b, with 
cin in one addend and a '1' in the other (cin in both would also do). Observe below that 
sum_sig (line 17) has now NUM_BITS + 2 bits and that the sum’s LSB is ignored in all output 
equations.

 16 architecture with_one_sum of adder_signed is
 17    signal sum_sig: signed(NUM_BITS+1 downto 0);
 18 begin
 19    sum_sig <= signed(a(NUM_BITS-1) & a & cin) + signed(b & '1');
 20    sum <= std_logic_vector(sum_sig(NUM_BITS downto 1));
 21    sumMSB <= sum_sig(NUM_BITS);
 22    cout <= a(NUM_BITS-1) xor b(NUM_BITS-1) xor sumMSB;
 23    oflow <= sumMSB xor sum(NUM_BITS-1);
 24 end architecture;
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Example 10.6. Floating- point adder and multiplier
This example shows the implementation of a floating- point (FP) adder/multiplier. Since this 
too is an arithmetic cir cuit, the suggestions presented above  will again be followed. (FP arith-
metic was reviewed in section 1.6.5 and FP types  were seen in section 7.6.5.)

The data type now is float, and the operators involved in this cir cuit are “+” and “*”. 
Consulting  table 9.4, we see in comment (28) that for both operators the output’s upper and 
lower bounds must be equal to the inputs’ largest and smallest bounds, respectively (though 
the compiler might require only the resulting vector length to be obeyed).

The first solution below employs the type float directly in the cir cuit ports (lines 7–8). 
The only package then needed in the packages list (lines 2–3) is float_pkg, which employs the 
default FP par ameters (for example, the rounding style is roundTiesToEven, explained in sec-
tion 1.6.5; as seen in section 7.6.5, the generic package is called float_generic_pkg). The inputs 
and outputs range is “5 downto −3” (lines 7–8), so the data repre sen ta tion is (S)(EEEEE)(FFF) 
for all, including the sum and multiplication (computed in lines 13–14).  Because the expo-
nent uses Ewidth = 5 bits, this cir cuit par ameters are (see section 1.6.5) Emin = 1 (always), Emax = 30, 
MAX = 31, BIAS = 15, and 2−14 ≤ dec ≤ (2 − 2−3)215.

In the second solution below, standard- logic types are employed for the cir cuit ports (lines 
8–9), which are generally preferred. Note the inclusion of the std_logic_1164 package (line 3) 
in the packages list.

It is also impor tant to mention that  free compiler versions usually have less VHDL support 
than their paid counter parts, so FP support might be available only in the latter.

 1 -------------------------------------------------------------------------------------
 2 library ieee;
 3 use ieee.float_pkg.all;
 4 
 5 entity fp_adder_multiplier is
 6    port (
 7       a, b: in float(5 downto -3);
 8       sum, prod: out float(5 downto -3));
 9 end entity;   
 10 
 11 architecture fp_arithmetic of fp_adder_multiplier is
 12 begin
 13    sum <= a + b;
 14    prod <= a * b;
 15 end architecture;
 16 -------------------------------------------------------------------------------------
 
 1 -------------------------------------------------------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
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 4 use ieee.float_pkg.all;
 5 
 6 entity fp_adder_multiplier is
 7    port (
 8       a, b: in std_logic_vector(8 downto 0);         --for float(5 downto -3)
 9       sum, prod: out std_logic_vector(8 downto 0));  --for float(5 downto -3)
 10 end entity;   
 11 
 12 architecture fp_arithmetic of fp_adder_multiplier is
 13 begin
 14    sum <= to_std_logic_vector(to_float(a, 5, 3) + to_float(b, 5, 3));
 15    prod <= to_std_logic_vector(to_float(a, 5, 3) * to_float(b, 5, 3));
 16 end architecture;
 17 -------------------------------------------------------------------------------------

Simulation results for the adder part of the code above are shown in figure  10.4. The 
inputs are: a = (0)(11100)(010), so E = 28 and F = 1/4; b1 = (0)(11101)(001), so E = 29 and F = 1/8; 
b2 = (0)(11101)(100), so E = 29 and F = 1/2; and b3 = (0)(11101)(110), so E = 29 and F = 3/4. BIAS 
is 15 in all cases. Note that  these values are precisely  those employed in the last example 
of section  1.6.5, from which the expected results,  after truncation and rounding (using 
the roundTiesToEven style, which is the default and recommended style for FP arithmetic), 
are: sum1 = a + b1 = 1.110·214 = (0)(11101)(110); sum2 = a + b2 = 1.000·215 = (0)(11110)(000); and 
sum3 = a + b3 = 1.010·215 = (0)(11110)(010).  These values are in perfect agreement with the 
simulation results of figure 10.4.

10.8 Additional Examples and Exercises

 These are in chapter 11, which is dedicated entirely to practicing with concurrent code. The 
list of all enumerated examples and exercises in this edition of the book is in appendix M.

Figure 10.4
Simulation results from the adder part of example 10.6.


